理论物理通讯(英文版)2024,Vol.76Issue(10) :7-11.DOI:10.1088/1572-9494/ad595c

New interaction solutions of the(2+1)-dimensional Nizhnik-Novikov-Veselov-type system and fusion phenomena

Guo-Hua Wang Ji Lin Shou-Feng Shen
理论物理通讯(英文版)2024,Vol.76Issue(10) :7-11.DOI:10.1088/1572-9494/ad595c

New interaction solutions of the(2+1)-dimensional Nizhnik-Novikov-Veselov-type system and fusion phenomena

Guo-Hua Wang 1Ji Lin 2Shou-Feng Shen3
扫码查看

作者信息

  • 1. School of Information Engineering,Taizhou Vocational College of Science & Technology,Taizhou 318020,China
  • 2. Department of Physics,Zhejiang Normal University,Jinhua 321004,China
  • 3. Department of Applied Mathematics,Zhejiang University of Technology,Hangzhou 310023,China
  • 折叠

Abstract

By means of the multilinear variable separation(MLVS)approach,new interaction solutions with low-dimensional arbitrary functions of the(2+1)-dimensional Nizhnik-Novikov-Veselov-type system are constructed.Four-dromion structure,ring-parabolic soliton structure and corresponding fusion phenomena for the physical quantity U=λ(lnf)xy are revealed for the first time.This MLVS approach can also be used to deal with the(2+1)-dimensional Sasa-Satsuma system.

Key words

interaction solution/NNV-type system/multilinear variable separation/fusion

引用本文复制引用

基金项目

National Natural Science Foundation of China(11771395)

出版年

2024
理论物理通讯(英文版)
中国科学院理论物理研究所 中国物理学会

理论物理通讯(英文版)

CSTPCD
影响因子:0.333
ISSN:0253-6102
段落导航相关论文