首页|基于机器学习模型的大连市生态环境状况关联性分析及预测研究

基于机器学习模型的大连市生态环境状况关联性分析及预测研究

扫码查看
基于2013-2020年大连市生态环境状况指数(EI)及同期社会、经济、人口、自然、能源、污染排放数据,利用皮尔逊相关系数法及SHAP机器学习模型解释器法,分析了社会、经济、人口、自然、能源、污染排放与生态环境状况之间的关联性,构建随机森林、支持向量机、极端梯度提升树、人工神经网络4种机器学习预测模型,实现大连市EI空间分异模拟预测.结果表明:EI与自然、人口相关性较高;极端梯度提升树模型表现最佳,训练集和测试集R2分别为0.999和0.756;敏感性分析表明,工业取水量对EI贡献最为显著,且主要为单因素影响;基于最佳预测模型,2023年大连市EI预测值为69.81,对大连市各区县的预测结果能够体现较好的空间差异性.
Based on ecologicalindex(EI)data of Dalian from 2013 to 2020 and social,economic,population,nature,energy and pollution emission data of the same period,Pearson correlation coefficient method and SHAP machine learning model interpreter method were used to analyze the correlation between society,economy,population,nature,energy,pollution emission and ecological environment conditions.Four kinds of machine learning prediction models,namely random forest,support vector machine,extreme gradient boosting and artificial neural network,were constructed to simulate and predict the spatial differentiation of EI in Dalian.The results showed that EI was highly correlated with nature and population.Extreme gradient boosting model has the best performance,and the R2 of training set and test set are 0.999 and 0.756;sensitivity analysis showed that industrial water withdrawal had the most significant contribution to EI,and it was mainly a single factors;based on the best prediction model,the predicted EI value of Dalian in 2023 is 69.81,which can reflect a good spatial difference of the forecast results of various districts and counties in Dalian.

machine learningecological environment conditionscorrelation analysisforecast

徐洁、苏静、王琳琳

展开 >

辽宁省大连生态环境监测中心,辽宁大连 116000

机器学习 生态环境状况 关联性分析 预测

2024

环境保护与循环经济
辽宁环境科学研究院 辽宁省环境科学学会

环境保护与循环经济

影响因子:0.424
ISSN:1674-1021
年,卷(期):2024.44(4)
  • 8