首页|湖南省能源消费碳排放预测研究

湖南省能源消费碳排放预测研究

扫码查看
能源消费碳排放是导致温室效应的主要因素,合理地预测碳排放量有利于制定相关减排政策.在碳排放量预测中,基于9种主要能源消费数据构建年碳排放总量测算法,依据灰色GM(1,1)模型进行碳排放量预测,针对该模型拟合精度较低的缺点,结合加权马尔可夫模型对预测结果进行修正.根据湖南省2006-2021年主要能源消费量,预测2022-2026年湖南省碳排放量,结果显示:灰色—加权马尔可夫模型在预测湖南省2006-2021年碳排放量中相较于灰色GM(1,1)模型预测精度提升65.49%,且2022-2026年湖南省能源消费碳排放量虽处于不断增长状态,但增长率仅有0.286 0%.研究结果可为湖南省实现"碳达峰"与"碳中和"提供参考依据.
Carbon emission from energy consumption is the main factor leading to the greenhouse effect,and a reasonable prediction of carbon emission is conducive to the formulation of relevant emission reduction policies.In the prediction of carbon emissions,the total annual carbon emissions measurement method is constructed based on nine major energy consumption data,and the carbon emissions are predicted based on the gray GM(1,1)model,and the prediction results are corrected by combining with the weighted Markov model for the shortcomings of the model with low fitting accuracy.The main energy consumption of Hunan Province from 2006 to 2021 is taken as an example to predict carbon emissions from 2022 to 2026.The results show that the gray-weighted Markov model in predicting carbon emissions in Hunan Province in 2006-2021 compared with the gray GM(1,1)model its accuracy of carbon emissions prediction increased by 65.49%,and the next five years of energy consumption in Hunan Province,although the carbon emissions are in the continuous growth,but the growth rate is only 0.286 0%.The results of the study can provide a reference basis for the development of"carbon neutral"and"carbon peak"in Hunan Province.

energy consumptioncarbon emission forecastinggray GM(1,1)weighted Markov modelHunan Province

洪彬、魏琴

展开 >

西藏大学工学院,西藏拉萨 850000

能源消费 碳排放量预测 灰色GM(1,1) 加权马尔可夫模型 湖南省

西藏自治区自然科学基金

XZ202301ZR0036G

2024

环境保护与循环经济
辽宁环境科学研究院 辽宁省环境科学学会

环境保护与循环经济

影响因子:0.424
ISSN:1674-1021
年,卷(期):2024.44(7)