首页|基于KPCA-WOA-SVM的住宅工程造价预测

基于KPCA-WOA-SVM的住宅工程造价预测

扫码查看
在项目决策阶段,准确预测住宅工程造价对提高工程项目决策的科学性至关重要,引入人工智能及机器技术能进一步提高预测的精准度。通过文献梳理,确定决策阶段住宅工程造价的影响指标,用核主成分分析(KPCA)对影响指标进行降维,利用鲸鱼优化算法(WOA)确定支持向量机(SVM)的惩罚参数与核参数,最终构建基于KPCA-WOA-SVM的住宅工程造价预测模型。采用江苏省近5年的70组住宅工程造价数据对模型进行验证,结果表明:与BP神经网络模型、SVM模型和WOA-SVM模型相比,KPCA-WOA-SVM模型预测精准度更高,适用性更好。
Forecasting the costs of residential construction based on KPCA-WOA-SVM
Accurately predicting the cost of residential engineering during the project decision-making stage is crucial for improving the scientificity of project decision-making.The development of artificial intelligence and machine learning can further improve the accuracy of predictions.Through literature research,the impact indicators of residential engineering cost in the decision-making stage are sorted out.kernel principal component analysis(KPCA)is used to reduce the dimensionality of the impact indicators,and whale optimization algorithm(WOA)is used to determine the penalty and kernel parameters of support vector machine(SVM).Finally,a residential engineering cost prediction model based on KPCA-WOA-SVM is constructed.The model validation is conducted on 70 sets of residential engineering cost data in Jiangsu Province over the past five years.The results showe that compared with the BP neural network model,SVM model,and WOA-SVM model,the KPCA-WOA-SVM model proposed in this paper has higher prediction accuracy and better applicability.

residential engineering costkernel principal component analysiswhale optimization algorithmsupport vector machine

邵良杉、华星月

展开 >

辽宁工程技术大学 工商管理学院,辽宁 葫芦岛 125105

辽宁理工学院 管理工程学院,辽宁 锦州 121000

住宅工程造价 核主成分分析 鲸鱼优化算法 支持向量机

国家自然科学基金

71771111

2024

辽宁工程技术大学学报(社会科学版)
辽宁工程技术大学

辽宁工程技术大学学报(社会科学版)

CHSSCD
影响因子:0.512
ISSN:1008-391X
年,卷(期):2024.26(3)
  • 14