首页|基于深度学习的会话推荐方法综述

基于深度学习的会话推荐方法综述

扫码查看
随着信息技术和智能应用的迅速发展,现今社会面临着大量数据和信息过载的挑战.为解决这一难题,基于会话的推荐方法应运而生.基于深度学习的会话推荐方法利用其强大的表示学习能力,更准确地预测用户的短期兴趣,并提供个性化的推荐服务.故综述了深度学习会话推荐方法的研究进展,包括基于卷积神经网络、图神经网络、注意力机制、多层感知器、混合模型等方法.总结了研究难点和未来研究方向.随着深度学习技术的不断进步,会话推荐方法将在实际应用中发挥越来越重要的作用.
Review of Deep Learning-based Conversation Recommendation Methods
As information technology and intelligent applications continues to advance quickly,today's society is facing challenges such as data and information overload.To solve this problem,conversation-based recommendation methods have emerged.Based on deep learning,these methods use their powerful representation learning ability to more accurately predict users'short-term interests and provide personalized recommendation services.This article reviews the research progress of deep learning-based conversation recommendation methods,including methods based on convolutional neural networks,graph neural networks,attention mechanisms,multi-layer perceptrons,and hybrid models.The article summarizes the research challenges and future directions.As deep learning technology continues to make progress,conversation-based recommendation methods are expected to become increasingly important in practical applications.

conversationrecommendation systemsdeep learningmachine learningneural network

袁凤源、梅红岩、温民伟、白杨、吴帅甫

展开 >

辽宁工业大学 电子与信息工程学院,辽宁 锦州 121001

会话 推荐系统 深度学习 机器学习 神经网络

2024

辽宁工业大学学报(自然科学版)
辽宁工业大学

辽宁工业大学学报(自然科学版)

影响因子:0.226
ISSN:1674-3261
年,卷(期):2024.44(1)
  • 8