首页|基于自适应时空图神经网络的交通预测

基于自适应时空图神经网络的交通预测

扫码查看
准确的交通预测对城市规划、交通安全有着重要的意义.现有的预测模型大多集中在设计复杂的预定义的图来捕获交通数据的特征.然而,交通数据具有很强的空间依赖性,这意味着道路网络拓扑图的节点之间往往存在着复杂的相关性,并且道路网络的拓扑图随着时间的推移而变化.预定义的图可能无法完整获取交通信息.针对该问题,提出了一个基于自适应时空图神经网络的交通预测模型,首先提出一个图结构学习组件,分别捕获交通网络的宏观和微观信息,将它们集成为最优图邻接矩阵.然后设计一个时空卷积块用以捕获交通数据的时空特性.在METR-LA和PEMS-BAY数据集上展开实验,实验结果表明所提出模型的预测性能优于主流模型.
Traffic Prediction Based on Adaptive Spatiotemporal Graph Neural Network
Accurate traffic prediction is of great significance to urban planning and traffic safety.Most of the existing predictive models focus on designing complex graph neural network structures,with the help of predefined graphs to capture the characteristics of traffic data.However,traffic data has a strong spatial dependency,which means that there are often complex correlations between nodes of a road network topology map,and the topology map of a road network changes over time.To solve this problem,an adaptive spatiotemporal graph neural network is proposed,and a graph structure learning component is first put forward,which captures the macro and micro information of the transportation network respectively and integrates them into an optimal graph adjacency matrix.Then,a spatiotemporal convolution block is designed to capture the spatiotemporal characteristics of traffic data.Experiments are carried out on the METR-LA and PEMS-BAY datasets,and the experimental results show that the predictive performance of the proposed model is better than that of the mainstream model.

deep learningtraffic predictiongraph neural networkspatiotemporal convolution block

赵腾宇、李昕、黄晶晶

展开 >

辽宁工业大学 电子与信息工程学院,辽宁 锦州 121001

辽宁工业大学 实业总公司,辽宁 锦州 121001

深度学习 交通预测 图神经网络 时空卷积块

2024

辽宁工业大学学报(自然科学版)
辽宁工业大学

辽宁工业大学学报(自然科学版)

影响因子:0.226
ISSN:1674-3261
年,卷(期):2024.44(4)