首页|基于遥感和机器学习的中国典型城市碳排放驱动因子及预测分析

基于遥感和机器学习的中国典型城市碳排放驱动因子及预测分析

扫码查看
采用国家统计数据和遥感夜间灯光数据,通过对数平均迪氏指数(LMDI)对15个典型城市的碳排放影响因素进行贡献率分析,并构建了 3组变量用于机器学习ridge和Lasso回归模型的预测分析.结果表明:城市生产总值、能源消费量(ES)、人口(P)、房地产开发施工面积(RECA)、夜间灯光强度(NL)、货物运输量(CT)和旅客运输量(PT)等7个因子对CO2排放起促进作用,能源消费结构(EI)和第三产业占比(TIR)对CO2排放起抑制作用.城市的成熟度越高,产业越丰富,则碳排放的影响因子越多样.回归预测模型ridge和Lasso在变量组合1至组合3中模拟结果与测试数据集的相关系数均为0.8以上,其中组合1结果最好,其次是组合2,最后是组合3.
Analysis and prediction of driving factors for carbon emissions in typical cities of China based on remote sensing data and machine learning method
Utilizing national statistical data and remote sensing nighttime light data,this study performs a contribu-tion rate analysis of the influencing factors on carbon emissions in 15 typical cities through the Logarithmic Mean Divisia Index(LMDI),and constructs three sets of variables for predictive analysis using machine learning Ridge and Lasso regression models.The results indicate that seven factors including urban Gross Domestic Product(GDP),Energy Consumption(ES),Population(P),Real Estate Construction Area(RECA),Nighttime Light Intensity(NL),Cargo Transportation Volume(CT),and Passenger Transportation Volume(PT)play a promo-ting role in CO2 emissions,whereas Energy Consumption Structure(EI)and the Proportion of Tertiary Industry(TIR)have an inhibiting effect on CO2 emissions.The more mature a city,the richer the industry,the more di-verse the impacting factors of carbon emissions.The correlation coefficient exceeds 0.8 between simulated results from predictive models of ridge and Lasso regression across variables set 1 to set 3 and the results from the test datasets.Among them,the result from set 1 is the best,followed by set 2,and finally,set 3.

Remote sensingMachine learningCarbon emissionsInfluencing factors

吴宇恒、白景昌

展开 >

中国遥感应用协会,北京 100094

北京航天世景信息技术有限公司,北京 100089

遥感 机器学习 碳排放 影响因子

中国科协咨询团队项目

20220615ZZ08010034

2024

气象与环境学报
中国气象局沈阳大气环境研究所

气象与环境学报

CSTPCD
影响因子:1.433
ISSN:1673-503X
年,卷(期):2024.40(1)
  • 30