首页|基于多时相MODIS数据的黑龙江省大豆种植区识别与面积估算

基于多时相MODIS数据的黑龙江省大豆种植区识别与面积估算

扫码查看
选用2017-2021 年黑龙江省多时相MODIS影像数据,基于Google Earth Engine(GEE)地理空间分析云平台,对比分析各类地物光谱反射率以及归一化植被指数(NDVI)、归一化水体指数(NDWI)等指数差异特征,建立分类决策树,识别黑龙江省大豆种植区、估算面积,并与其他分类方法进行比较.结果表明:基于决策树分类方法识别的2018 年黑龙江省大豆种植区面积估算总精度为97.09%,Kappa系数为0.77,分类精度高于随机森林和支持向量机法.通过调整优化决策树模型,进行无样本年份大豆种植区识别和面积估算,得到 2017-2021 年黑龙江省大豆分布变化,总精度为 90%以上,Kappa系数大于0.60,面积估算结果精度达95%以上.
Identification and area estimation of soybean planting areas in Heilongjiang province based on multi-temporal MODIS data
Multi-temporal MODIS image data of Heilongjiang province from 2017 to 2021 were selected,and based on Google Earth Engine(GEE)geospatial analysis cloud platform,the spectral reflectance of various types of fea-tures as well as the difference characteristics of indices such as Normalized Difference Vegetation Index(NDVI)and Normalized Difference Water Index(NDWI)were compared and analyzed.A classification decision tree was established to identify soybean planting areas in Heilongjiang province,estimate the area,and compare with other classification methods.The results show that the total accuracy of estimating the area of soybean planting areas in Heilongjiang province in 2018 identified based on the decision tree classification method is 97.09%,and the Kap-pa coefficient is 0.77,which is higher than the random forest and support vector machine methods in terms of clas-sification accuracy.By adjusting and optimizing the decision tree model for soybean planting area identification and area estimation in the year without sample,the soybean distribution change in Heilongjiang province from 2017 to 2021 was obtained with a total accuracy of more than 90%,a Kappa coefficient of more than 0.60,and an accura-cy of more than 95%for the area estimation results.

Vegetation indexWater indexSpectral analysisDecision tree classification

宋瑞、赵恒谦、于文颖、杨屹峰、李子涵

展开 >

中国气象局沈阳大气环境研究所,辽宁 沈阳 110166

中国矿业大学(北京)地球科学与测绘工程学院,北京 100083

植被指数 水体指数 光谱分析 决策树分类

2024

气象与环境学报
中国气象局沈阳大气环境研究所

气象与环境学报

CSTPCD
影响因子:1.433
ISSN:1673-503X
年,卷(期):2024.40(6)