首页|三类低复杂度基及其对偶基

三类低复杂度基及其对偶基

扫码查看
设N={α0,α1,…,αn-1}是E在F上的一组基,构造了一类给定乘法表及复杂度为3n-2的低复杂度正规基,根据迹函数和乘法表的相关概念,证明其对偶基M的生成元的形式,并证明了对偶基的复杂度为3n-2或3n-3.计算了 E在F上的伪自对偶多项式基和弱自对偶多项式基的复杂度.为密码学领域寻找优化的算法,选择合适的基提供了理论依据.
The three low complexity bases and their dual bases
Suppose that N={α0,α1,···,αn-1} is a basis of E over F,some low complexity normal ba-ses with complexity 3n-2 was constructed and multiplication table was given.According to the relat-ed concepts of the trace function and multiplication table,it proved that the form of the generator of their dual basis and their dual bases has complexity 3n-2 or 3n-3.Furthermore,it calculated the complexity of the pseudo-self-dual polynomial bases and the weak self-dual polynomial bases of E o-ver F.This provides a theoretical basis for finding optimized algorithms and selecting appropriate ba-ses in the field of cryptography.

normal basispolynomial basisdual basiscomplexity

张妍、苏丹丹

展开 >

辽宁师范大学数学学院,辽宁大连 116081

佛山职业技术学院文化旅游创意学院,广东佛山 528000

正规基 多项式基 对偶基 复杂度

国家自然科学基金重大项目校级重点项目校级高层次人才项目

10990011KY2020Z02KY2022G03

2024

辽宁师范大学学报(自然科学版)
辽宁师范大学

辽宁师范大学学报(自然科学版)

影响因子:0.491
ISSN:1000-1735
年,卷(期):2024.47(1)
  • 8