首页|基于虚拟样本伪标签生成的高光谱图像分类

基于虚拟样本伪标签生成的高光谱图像分类

扫码查看
半监督高光谱图像分类的精度一般随着标记像素数的增加而提高.然而,标签样本的获得费时费力,且依赖于专家知识.针对这个问题,提出了一种通过少量标签样本生成具有伪标签的虚拟样本新方法.基于数学中的凸集理论,所提出的方法利用少量的训练样本可以生成任意多的带有伪标签的虚拟样本,有效地扩大了训练样本集,明显改善了半监督分类器的分类结果.为了验证所提方法的有效性,在Indian Pines和Pavia Uni-versity 两个常用的实际高光谱数据集上进行了广泛测试.实验结果表明,利用所提出的方法在分类具有少量标签样本的高光谱图像时,3个评价分类结果的指标值均有明显提升.
Hyperspectral image classification based on virtual sample and pseudo-label
The accuracy of semi-supervised hyperspectral image classification generally improves with an increase of the number of labeled pixels.However,acquiring of labeled samples is time-consuming and laborious,and depends on expert knowledge.To address this issue,this paper proposes a new method to generate virtual samples with pseudo-labels.Based on the convex set theory in mathemat-ics,the proposed method can generate a large number of virtual samples with pseudo-labels by using a small number of labeled samples.An effectively expands the training sample set and significantly improves the classification results of semi-supervised classifiers.To verify the validity of the proposed method,extensive tests were performed on two common real hyperspectral data sets,Indi-an Pines and Pavia University.Experimental results show that when the proposed method is used to classify hyperspectral images with a small number of labeled samples,the index values of the three evaluation classification results are significantly improved.

hyperspectral imagevirtual samplepseudo-labelsemi supervised classificationconvex set

谢福鼎、雷潇涵

展开 >

辽宁师范大学地理科学学院,辽宁大连 116029

高光谱图像 虚拟样本 伪标签 半监督分类 凸集

国家自然科学基金

61772252

2024

辽宁师范大学学报(自然科学版)
辽宁师范大学

辽宁师范大学学报(自然科学版)

影响因子:0.491
ISSN:1000-1735
年,卷(期):2024.47(1)
  • 25