首页|纽结琼斯多项式与整系数多项式

纽结琼斯多项式与整系数多项式

扫码查看
主要研究纽结琼斯多项式与整系数多项式之间的关系.利用纽结琼斯多项式的性质以及在某些点的特殊值,给出了宽度不同的整系数多项式为纽结琼斯多项式的成立条件.首先,给出了整系数多项式是某纽结Jones多项式的充分必要条件,给出了宽度为6的多项式是某一组结Jones多项式的充分必要条件.其次,主要研究Jones多项式与十一次整系数多项式的关系,研究宽度为9的十一次整系数多项式是琼斯多项式的必要条件,进而给出了某些纽结的Arf不变量.
Knot Jones polynomials and integral coefficient polynomials
This paper primarily studies the relationship between the knot Jones polynomial and the in-tegral coefficient polynomial.By examining the properties of the Jones polynomials and the special values at some points,we continue to study the integral coefficient polynomials with different degrees and widths as the establishment conditions of the Jones polynomials in knots.First,the suffi-cient and necessary conditions for an integral coefficient polynomial to be a Jones polynomial of a cer-tain knot are presented.It shown that a polynomial of width six is a necessary and sufficient condition for Jones polynomial.Secondly,the relationship between Jones polynomial and polynomial with inte-gral coefficients(11-degree).Specifically we explore the cases of 11-degree integer coefficient polyno-mial of width nine is Jones polynomial.Additionally,Arf invariants of some knots are given.

knot Jones polynomialwidthpolynomial with integral coefficientArf invariant

韩友发、马凯千、李欣璐、燕佳玉

展开 >

辽宁师范大学数学学院,辽宁大连 116081

纽结琼斯多项式 宽度 整系数多项式 Arf不变量

国家自然科学基金资助项目

12026411

2024

辽宁师范大学学报(自然科学版)
辽宁师范大学

辽宁师范大学学报(自然科学版)

影响因子:0.491
ISSN:1000-1735
年,卷(期):2024.47(3)
  • 2