首页|基于U-Net神经网络的浮筏养殖信息提取——以长海县为例

基于U-Net神经网络的浮筏养殖信息提取——以长海县为例

扫码查看
浮筏养殖是海水养殖中最重要的类型之一,对于浮筏养殖的精确提取尤为重要.然而浮筏在遥感影像中分布密集,且背景复杂,并且以往的浮筏提取方法,多为机器学习,未能挖掘浮筏养殖的深度特征,以及光谱信息的高效利用.针对上述问题,提出了 U-Net网络模型进行浮筏养殖信息提取,使用比值指数计算特征波段,去除冗余光谱信息,并添加深度神经网络,深化提取浮筏信息提取的深度特征通道,实现了浮筏养殖信息的高精度提取.选取长海县大长山岛作为研究区域,与Canny算子、Otsu算法、PCA_Kmeans算法提取结果进行了对比,U-Net模型浮筏养殖的提取总体精度为95.6%,与常用的机器学习算法相比,提取精度提高了 9%~13%,验证了 U-Net模型在浮筏养殖识别中的高效性.
Extraction of Floating Raft Aquaculture Information Based on U-Net Neural Network——A Case Study of Changhai County
Floating raft aquaculture is one of the most important types of marine aquaculture,so accurate extrac-tion of floating raft cultivation is particularly important.However,floating rafts are densely distributed in remote sensing images and have complex backgrounds.Previous methods for extracting floating rafts mainly rely on ma-chine learning,which fail to explore the deep features of floating raft cultivation and efficiently utilize spectral in-formation.To address these issues,a U-Net network model for extracting floating raft aquaculture information is proposed.Ratio indices are used to calculate feature bands,remove redundant spectral information,and add a deep neural network to deepen the extraction of deep feature channels for floating raft information,achieving high-pre-cision extraction of floating raft aquaculture information.Dachangshan Island in Changhai County is selected as the study area and the extraction results with Canny operator,Otsu algorithm,and PCA_Kmeans algorithm is compared.The overall accuracy of floating raft aquaculture extraction using the U-Net model is 95.6%,which is 9%to 13%higher than common machine learning algorithms,demonstrating the efficiency of the U-Net model in identifying floating raft aquaculture.

floating raft aquacultureU-Net modelratio indexdeep featurespectral information

由金浩、刘威、王权明

展开 >

辽宁师范大学地理科学学院,辽宁大连 116029

国家海洋环境检测中心,辽宁 大连 116023

浮筏养殖 U-Net模型 比值指数 深度特征 光谱信息

2024

绿色科技
花木盆景杂志社

绿色科技

影响因子:0.365
ISSN:1674-9944
年,卷(期):2024.26(2)
  • 22