首页|基于CPSONN-BP的校园节能减排数据融合

基于CPSONN-BP的校园节能减排数据融合

扫码查看
随着全球气候变化加剧,碳排放和能源消耗成为国际关注的焦点。在"双碳"目标背景下,高校节能减排的重要性日益凸显。基于此,研究了 一种基于混沌粒子群优化的BP神经网络(CPSONN-BP)模型,用于校园节能减排数据的有效融合和分析。该模型利用多源异构数据,旨在建立一个精准综合的高校节能减排预测模型,以更有效应对双碳背景下的能源挑战和环境压力。通过对CPSONN-BP模型在校园节能减排数据融合方面的性能进行综合比较研究,发现该模型在准确度、收敛速度、稳定性和处理复杂数据能力上具有显著优势。与传统Excel预测方法和标准BP神经网络相比,CPSONN-BP模型在处理多变量和非线性问题时表现出更快的收敛速度和更高的预测准确性。该模型在多次运行中表现出高度的可靠性和一致性,特别适用于解析高度非线性和多变量特征的数据。研究展示了CPSONN-BP模型在校园节能减排数据融合方面的优越性能,对于促进可持续发展,实现经济、环境和社会的协调发展具有重要意义。
Data Fusion of Campus Energy Conservation and Emission Reduction Based on CPSONN-BP
With the intensification of global climate change,carbon dioxide emissions and energy consumption have become the focus of international attention.In the context of the"dual-carbon"target,the importance of en-ergy conservation and emission reduction in universities has become increasingly prominent,especially in achie-ving carbon peak and carbon neutrality goals.This paper studies a Chaos Particle Swarm Optimization-based BP Neural Network(CPSONN-BP)model for the effective fusion and analysis of campus energy conservation and e-mission reduction data.Utilizing multi-source heterogeneous data,the model aims to establish a precise and com-prehensive prediction model for university energy conservation and emission reduction and to more effectively address the energy challenges and environmental pressures under the dual-carbon background.By conducting a comprehensive comparative study on the performance of the CPSONN-BP model in the fusion of campus energy conservation and emission reduction data,this paper finds that the model exhibits significant advantages in accu-racy,convergence speed,stability,and the ability to handle complex data.Compared with traditional Excel predic-tion methods and standard BP neural networks,the CPSONN-BP model shows faster convergence speed and high-er prediction accuracy in dealing with multivariate and nonlinear problems.Moreover,the model demonstrates high reliability and consistency in multiple runs,making it particularly suitable for analyzing data with highly nonlinear and multivariate characteristics.This research highlights the superior performance of the CPSONN-BP model in the fusion of campus energy conservation and emission reduction data,which is of great significance for promoting sustainable development and achieving harmonious development of economy,environment,and society.

university energy conservation and emission reductionenergy consumptionprediction modelmulti-source heterogeneous datadata fusion

边超、黄光球、惠巧娟

展开 >

银川科技学院 信息工程学院,宁夏 银川 750021

西安建筑科技大学管理学院,陕西西安 710055

高校节能减排 能源消耗 预测模型 多源异构数据 数据融合

国家自然科学基金陕西省自然科学基础研究计划重点项目

718741342019JZ-30

2024

绿色科技
花木盆景杂志社

绿色科技

影响因子:0.365
ISSN:1674-9944
年,卷(期):2024.26(6)
  • 37