首页|基于机器学习的松材线虫病疫木识别研究

基于机器学习的松材线虫病疫木识别研究

扫码查看
松材线虫病是一种毁灭性的森林病害,对我国的森林资源、生态环境和经济发展构成严重威胁.为准确且高效地识别疫木,从林区无人机影像中提取了植被指数、HSI色彩和纹理等17个特征指数,利用随机森林(random forest,RF)、BP 神经网络(back propagation neural network)、支持向量机(sup-port vector machine,SVM)、CatBoost(category boosting)、K 最近邻(k-nearest neighbor,KNN)5 种典型的机器学习算法构建了多特征多模型的松材线虫病疫木识别方法.结果表明:仅使用单一类型特征或全部特征时均不能获得最优的分类准确率,不同的机器学习模型在特征选择之后能提升疫木识别的准确率;其中以RF模型的疫木提取精度最高,准确率为92.94%.总体而言,RF模型与其他模型相比在无人机松材线虫病疫木识别中具有较大潜力.建立的疫木识别方法为防控森林病虫传播提供了技术支撑.
Recognition of Pine Wilt Disease Infected Wood Based on Machine Learning
Pine wilt disease is a devastating threat to forest,which poses a serious damage to China.In order to ac-curately and efficiently identify infected wood,this study extracted 17 feature indexes such as vegetation index,HSI color and texture from forest drone images,and used five typical machine learning algorithms,including ran-dom forest(RF),back propagation neural network(BP neural network),support vector machine(SVM),CatBoost and K nearest neighbor(KNN)to build a multi-feature and multi-model identification method for identifying pine wilt disease infected wood.The results showed that neither using only a single type of feature nor using all fea-tures could achieve the optimal classification accuracy.Different machine learning models could improve the ac-curacy of wood identification after feature selection.Among them,the RF model had the highest extraction accu-racy for infected wood,with an accuracy rate of 92.94%.Overall,the RF model has great potential in the identifi-cation of pine wilt disease infected wood compared with other models.The identification method established in this study provided technical support for preventing and controlling the spread of forest pests and diseases.

pine wilt diseaseUAV remote sensing imagesmachine learningfeature selection

闫彦廷、陈永刚、王博、郝首臣

展开 >

浙江农林大学 环境与资源学院、碳中和学院,浙江 杭州 311300

松材线虫病 无人机影像 机器学习 特征选择

浙江省自然科学基金

LY16D010009

2024

绿色科技
花木盆景杂志社

绿色科技

影响因子:0.365
ISSN:1674-9944
年,卷(期):2024.26(7)
  • 23