首页|基于深度学习的PM2.5预测方法研究——以苏州市为例

基于深度学习的PM2.5预测方法研究——以苏州市为例

扫码查看
研究苏州市空气质量与气象因素的关系,基于不同深度学习模型高效准确预测苏州市PM2。5 浓度,为大气污染治理和风险规避提供科学依据。使用2014-2022年的空气质量和气象监测历史数据,使用RNN、LSTM、GRU 3种深度学习神经网络模型,对比不同模型在不同时间步长下预测PM2。5 浓度的性能表现,并对不同特征因子的重要性进行分析。结果表明:不同时间步长下模型的预测性能高低比较为:GRU>LSTM>RNN,GRU模型在时间步长为40时预测性能最优,测试集取得的平均绝对误差、均方根误差、归一化均方根误差分别为8。68、11。50、0。10。与PM2。5 相关程度较高的特征为PM10、空气质量等级、空气质量指数,是预测模型的重要特征;风力、天气等特征虽然与PM2。5 相关性程度较低,但是却能显著地提升模型性能,因此也为重要特征;而最高温度、最低温度、风向为不重要特征。
Research on PM2.5 Forecasting Methods Based on Deep Learning——A Case Study of Suzhou City
The study investigates the relationship between air quality and meteorological factors in Suzhou City.PM2.5 concentration in Suzhou was efficiently and accurately predicted based on different deep learning models,which provides a scientific basis for air pollution control and risk avoidance.Utilizing historical air quality and meteorological monitoring data from 2014 to 2022,the study employs three deep learning neural network models:RNN,LSTM,and GRU.It compares the performance of these models in predicting PM2.5 concentrations at differ-ent time steps and analyzes the importance of various feature factors.The results indicate that the predictive per-formance of the models,ranked from highest to lowest at different time steps,is as follows:GRU>LSTM>RNN.The GRU model exhibits the best predictive performance at a time step of 40,achieving average absolute error,root mean square error,and normalized root mean square error of 8.68,11.50,and 0.10,respectively.Features highly correlated with PM2.5 include PM10,air quality level,and air quality index,which are identified as important features of the prediction model.Although wind power and weather characteristics are less correlated with PM2.5,they can significantly improve model performance,so they are also important features.The highest temperature,the lowest temperature and the wind direction are not important characteristics.

PM2.5 concentration forecastingRNNLSTMGRU

周聪、周越

展开 >

江苏科技大学苏州理工学院 电气与信息工程学院,江苏 张家港 215600

PM2.5浓度预测 RNN LSTM GRU

2024

绿色科技
花木盆景杂志社

绿色科技

影响因子:0.365
ISSN:1674-9944
年,卷(期):2024.26(12)