首页|基于Sentinel数据的沅陵县针叶林可燃物载量估测研究

基于Sentinel数据的沅陵县针叶林可燃物载量估测研究

扫码查看
森林可燃物是引发森林火灾的重要因素之一,准确估测森林可燃物载量对于制定火灾防控策略、提高火灾预警能力以及保护生态环境具有重要意义。以湖南省沅陵县 Senitnel-1 A 和 Sentinel-2 A影像为数据源,通过提取多源数据的不同类型遥感因子,结合地面调查获取的样地可燃物载量信息,采用前向特征筛选法和 4 种机器学习模型[多元线性回归(multiple linear regression,MLR)、k 最近邻(k-nearest neighbor,kNN)、支持向量机回归(support vector regression,SVR)、随机森林(random for-est,RF)]构建了针叶林可燃物载量反演模型,并对研究区内针叶林可燃物载量进行反演。结果表明:①基于 Sentinel-1 A数据提取的 VH 极化后向散射系数与针叶林可燃物载量有较高的相关性;②相比于单一数据源,联合 Sentinel-1 A 和 Sentinel-2 A 数据可显著提高针叶林可燃物载量估测精度,最优模型R2 分别提高了 0。19、0。29,rRMSE 分别降低 4。66、6。94 个百分点,RMSE 分别降低了 6。13、9。13 t/hm2,平均 rRMSE 分别降低了 5。17、5。75 个百分点,最优模型为 SVR 模型,其R2=0。5,rRMSE=27。71,RMSE=36。47 t/hm2。Sentinel-1 A数据的加入有利于针叶林可燃物载量估测精度的提升。
Estimation of Fuel Load in Coniferous Forests of Yuanling County Based on Sentinel Data
Forest combustible material,as one of the key factors contributing to forest fires,holds significant im-portance in formulating fire prevention and control strategies,enhancing fire warning capabilities,and safeguard-ing ecological environments.This study utilizes Sentinel-1A and Sentinel-2A imagery as data sources in Yuanling County,Hunan Province.Through the extraction of various types of remote sensing factors from multiple data sources and integrating ground survey data on combustible load,the study employs forward feature selection and four machine learning models(Multiple Linear Regression,MLR;k-Nearest Neighbor,kNN;Support Vector Re-gression,SVR;Random Forest,RF)to construct models for estimating combustible load in coniferous forests.The results indicate that:①The VH polarization backscatter coefficient extracted based on Sentinel-1A data has a high correlation with the fuel load of coniferous forests;②Compared to single data sources,the combination of Senti-nel-1 and Sentinel-2 data contributes to improved accuracy in estimating combustible load in coniferous forests.The optimal models exhibit an increase in R2 by 0.19 and 0.29,a decrease in r RMSE by 4.66 and 6.94 percentage points,a decrease in RMSE by 6.13 t/hm2 and 9.13 t/hm2,and an average decrease in rRMSE by 5.17 and 5.75 per-centage points,respectively.The best-performing model is the SVR model,with R2=0.5,rRMSE=27.71,and RMSE=36.47 t/hm2.The incorporation of Sentinel-1A data contributes to the enhancement of accuracy in esti-mating combustible load in coniferous forests.

forestry remote sensingforest fuelsSentinel dataremote sensing characteristicsmachine learning

郑龙兵、郑欢娜、林辉

展开 >

中南林业科技大学林业遥感信息工程研究中心,湖南 长沙 410004

林业遥感大数据与生态安全湖南省重点实验室,湖南 长沙 410004

南方森林资源经营与监测国家林业与草原局重点实验室,湖南 长沙 410004

林业遥感 森林可燃物 Sentinel数据 遥感特征 机器学习

2024

绿色科技
花木盆景杂志社

绿色科技

影响因子:0.365
ISSN:1674-9944
年,卷(期):2024.26(14)
  • 10