绿色科技2024,Vol.26Issue(18) :163-169,179.

PM2.5浓度时空分布特征及驱动因子分析——以华中地区为例

Analysis of Spatiotemporal Distribution Characteristics and Driving Factors of PM2.5 Concentration——Taking Central China as an Exmple

谢金林 曹良中 张智 王妍 张辉 李澜 徐少文
绿色科技2024,Vol.26Issue(18) :163-169,179.

PM2.5浓度时空分布特征及驱动因子分析——以华中地区为例

Analysis of Spatiotemporal Distribution Characteristics and Driving Factors of PM2.5 Concentration——Taking Central China as an Exmple

谢金林 1曹良中 1张智 2王妍 1张辉 1李澜 3徐少文1
扫码查看

作者信息

  • 1. 九江学院旅游与地理学院,江西九江 332005;九江市国土测绘与3S技术应用重点实验室,江西 九江 332005
  • 2. 豫章师范学院 生态与环境学院,江西 南昌 330199;南昌市绿色新型材料与工业废水处理重点实验室,江西 南昌 330199
  • 3. Honam University,韩国 光州 62399
  • 折叠

摘要

近年来,华中地区极端恶劣天气多发,空气污染程度愈发严重.作为我国重要的经济交通枢纽,针对其空气污染进行研究十分必要.基于多源遥感数据,采用MK检验方法分析2000-2021年华中地区PM2.5浓度时空分布特征,采用地理探测器方法探讨影响该地区PM2.5浓度的因子.结果表明:华中地区PM2.5浓度呈"北高南低,东高西低"分布特征;地区年均PM2.5浓度呈倒"V"形分布特征,2000-2009年PM2.5年均浓度显著上升,2010-2021年显著下降.在所有驱动因子中,相对湿度的驱动力最强(q=0.733),其与碳排放组合为最强交互因子(q=0.84).交互探测结果显示社会因子和自然因子交互解释效果大于其他因子交互,表明地区PM2.5分布受自然因素和社会因素共同影响.

Abstract

In recent years,extreme weather has occurred frequently in central China,and the degree of air pollu-tion has become more and more serious.As an important economic and transportation hub in China,it is necessary to study its air pollution.Based on multi-source remote sensing data,this study used the MK test method to ana-lyze the spatial and temporal distribution characteristics of PM2.5 concentration in Central China from 2000 to 2021,and used the geographic detector method to explore the factors affecting PM2.5 concentration in this region.The results showed that PM2.5 concentrations in central China were high in the north and low in the south,high in the east and low in the west.The annual average PM2.5 concentration in the region showed an inverted V-shaped distribution characteristics,and the annual average PM2.5 concentration increased significantly from 2000 to 2009 and decreased significantly from 2010 to 2021.PM2.5 concentrations abruptly changed in 2019 due to the outbreak of the pandemic.Among all the driving factors,relative humidity was the strongest driver("q"=0.733),and it was the strongest interaction factor with carbon emissions("q"=0.84).The interaction detection results show that the explanatory effect of the interaction between social factors and natural factors is greater than that of other fac-tors,indicating that the distribution of PM2.5 in the region is affected by both natural and social factors.

关键词

空气污染/MK检验/地理探测器/交互探测

Key words

air pollution/MK test/geo-detectors/cross-probing

引用本文复制引用

出版年

2024
绿色科技
花木盆景杂志社

绿色科技

影响因子:0.365
ISSN:1674-9944
段落导航相关论文