首页|SSA-RBF神经网络模型在风电风速预测中的应用研究

SSA-RBF神经网络模型在风电风速预测中的应用研究

扫码查看
为了提高风电功率的预测精度和稳定性,以更好应对风速的多变性和非线性特性,提出了一种基于麻雀搜索算法(SSA)优化径向基函数(RBF)神经网络的风速预测模型(SSA-RBFN).通过SSA优化RBFN的参数,以预测提高模型的精度和稳定性.通过选用风电场实际数据进行研究,与SSA-BP模型、RBF模型、BP模型进行比较.仿真结果表明:SSA-RBF预测模型在MAE、MBE和RMSE指标上体现出预测误差显著低于传统RBF模型和BP模型,表明提出的模型是可行和有效的.
Application of SSA-RBF Neural Network Model in Wind Power and Wind Speed Prediction
In order to improve the accuracy and stability of wind power prediction to better cope with the variabil-ity and nonlinear characteristics of wind speed,this paper proposes a wind speed prediction model(SSA-RBFN)based on the SSA optimized radial basis function(RBF)neural network.The parameters of RBFN are optimized by SSA to predict and improve the accuracy and stability of the model.By selecting actual data from wind farms for the study and comparing with SSA-BP model,RBF model,and BP model,the simulation results show that the SSA-RBF prediction model is reflected in the MAE,MBE,and RMSE indexes,and the prediction error is signifi-cantly lower than that of the traditional RBF and BP models,which indicates that the proposed model is feasible and effective.

wind speed predictionsparrow search algorithmradial basis function neural networkprediction model optimization

罗丹、章若冰、余娟

展开 >

湖南铁道职业技术学院,湖南 株洲 412000

风速预测 麻雀搜索算法 径向基函数神经网络 预测模型优化

2024

绿色科技
花木盆景杂志社

绿色科技

影响因子:0.365
ISSN:1674-9944
年,卷(期):2024.26(18)