首页|基于集成机器学习的数据资产价值评估方法研究

基于集成机器学习的数据资产价值评估方法研究

扫码查看
为了寻求一种更为精确且通用的数据资产价值评估方法来帮助规范完善当前的数据交易定价体系,促进数据交易市场规模的扩大和数据要素的交易和流通。以上海数据交易所、浙江大数据交易平台、数易网、德阳数据元件交易平台中数据集和数据产品的详细信息以及交易价格作为样本,构建了综合多个大数据交易网站的样本数据的数据资产价值评估模型,并对比分析了回归树模型和随机森林回归模型评估效果,其中回归树模型训练集准确率为77。91%、测试集准确率为72。86%,随机森林回归模型训练集准确率为78。98%、测试集准确率为79。26%。结果表明:通过集成算法可以改善回归树模型容易过拟合的问题,且随机森林回归模型对于多个大数据交易网站样本数据的评估效果更优。
Research on Data Asset Value Evaluation Method Based on Integrated Machine Learning
This paper aims to seek a more accurate and general data asset value evaluation method to help stand-ardize and improve the current data transaction pricing system and promote the expansion of data transaction mar-ket scale and the transaction and circulation of data elements.Taking the detailed information of data sets and data products in Shanghai Data Exchange,Zhejiang Big Data Trading platform,Soeay Network and Deyang Data Com-ponent trading platform as samples and transaction prices,this paper builds a data asset value evaluation model that integrates the sample data of multiple big data trading websites,and compares and analyzes the evaluation effects of regression tree model and random forest regression model.The accuracy of the training set and the test set of the regression tree model were 77.91%and 72.86%,and the accuracy of the training set and the test set of the random forest regression model were 78.98%and 79.26%.The results show that the integration algorithm can improve the problem that the regression tree model is easy to overfit,and the random forest regression model has a better evaluation effect on the sample data of multiple big data trading websites.

data assetmachine learningregression treerandom forests

陈嘉怡、李谦

展开 >

西南林业大学经济管理学院,云南 昆明 650224

数据资产 机器学习 回归树 随机森林

2024

绿色科技
花木盆景杂志社

绿色科技

影响因子:0.365
ISSN:1674-9944
年,卷(期):2024.26(21)