首页|利用无人机高光谱成像和ES-CNN策略诊断油茶营养

利用无人机高光谱成像和ES-CNN策略诊断油茶营养

扫码查看
油茶是我国重要的木本油料作物,其产量和品质受营养状况影响显著。传统的油茶营养诊断方法费时费力,且难以实现大面积监测。本文旨在利用无人机(unmanned aerial vehicle,UAV)高光谱遥感技术,探索快速、无损、精准的油茶营养诊断方法,为油茶精准施肥提供技术支撑。选择典型油茶种植区作为研究区域,利用无人机搭载高光谱成像仪获取油茶冠层高光谱图像(hyper spectral image,HSI),经面向对象分类提取了油茶冠层区域,并分别进行了基于GPS点位的光谱采样(GPS sample,GS)和基于易康软件分类结果的光谱采样(ecognition sample,ES)。在经过主成分分析(principal com-ponents analysis,PCA)降维处理后,利用卷积神经网络(convolutional neural network,CNN)算法结合地面实测油茶叶片氮(N)、磷(P)、钾(K)等关键营养元素含量并进行了精度评价。结果表明:油茶冠层光谱特征能够使其被精准提取。基于PCA所得主成分构建的油茶叶片营养元素含量估测模型具有较高的精度,能够有效地诊断油茶的营养状况,此外,由ES采样和CNN结合的策略(ES-CNN)因采样数据更具代表性而有更高检测精度(N、P、K检测模型的R2分别是0。63、0。52、0。53,检测结果的RMSE分别是0。11、13。07、7。78)。因此无人机高光谱成像技术和ES-CNN策略可以为油茶营养诊断提供一种快速、无损、精准的新方法,可用于指导油茶精准施肥,提高油茶产量和品质,促进油茶产业可持续发展。
Nutritional Diagnosis of Camellia oleifera Using UAV Hyperspectral Imaging and ES-CNN Strategy
Camellia oleifera,an important woody oil crop in China,is significantly influenced by its nutritional status in terms of yield and quality.Traditional nutritional diagnosis methods for Camellia oleifera are time-con-suming,labor-intensive,and challenging for large-scale monitoring.This study aims to develop a rapid,non-de-structive,and accurate nutritional diagnosis method for Camellia oleifera using Unmanned Aerial Vehicle(UAV)hyperspectral remote sensing technology,providing technical support for precise fertilization.A typical Camellia oleifera planting area was selected as the research site.A drone equipped with a hyperspectral imager was used to acquire Hyperspectral Images(HSI)of the Camellia oleifera canopy.The canopy area was extracted through ob-ject-oriented classification,and spectral analysis was conducted based on GPS point sampling(GPS Sample,GS)and Ecognition software classification results(Ecognition Sample,ES).After dimensionality reduction using Prin-cipal Component Analysis(PCA),a Convolutional Neural Network(CNN)algorithm was employed in conjunction with ground measurements of key nutritional elements(nitrogen,phosphorus and potassium)in Camellia oleifera leaves to evaluate content accuracy.The results show that the spectral characteristics of the Camellia oleifera can-opy enable accurate extraction.The estimation model of nutrient element content in Camellia oleifera leaves based on PCA components has high accuracy and can effectively diagnose the nutritional status of Camellia oleifera.The strategy combining ES sampling and CNN(ES-CNN)achieved higher accuracy due to more representative sam-pling data.The detection models for nitrogen,phosphorus,and potassium showed high accuracy,with R2 values of 0.63,0.52,and 0.53 respectively,and Root Mean Square Error(RMSE)values of 0.11,13.07,and 7.78 respectively.In conclusion,UAV hyperspectral imaging technology combined with the ES-CNN strategy provides a fast,non-destructive,and accurate new method for nutritional diagnosis of Camellia oleifera.This approach can guide pre-cise fertilization,enhance yield and quality,and promote the sustainable development of the Camellia oleifera in-dustry.

Camellia oleiferaUAVhyperspectral imagingnutritional diagnosisprincipal component analysisconvolutional neural network

陈龙跃、段丹丹、高佳华、张祖铭、孙鹤、姜毅、冉成

展开 >

北京市农林科学院信息技术研究中心,北京 100000

岭南现代农业科学与技术广东省实验室河源分中心,广东 河源 517000

油茶 无人机 高光谱成像 营养诊断 主成分分析 卷积神经网络

2024

绿色科技
花木盆景杂志社

绿色科技

影响因子:0.365
ISSN:1674-9944
年,卷(期):2024.26(22)