首页|基于遥感技术的露天煤矿地表沉降监测与预测模型

基于遥感技术的露天煤矿地表沉降监测与预测模型

扫码查看
开发了一种基于遥感技术的露天煤矿地表沉降监测与预测模型.基于卫星遥感Landsat和Sentinel平台的光学影像及合成孔径雷达(SAR)影像构建了一个高效的数据处理流程,流程包括辐射校正、大气校正、几何校正等步骤以及多源数据的同化;采用了支持向量机(SVM)、神经网络和随机森林等机器学习算法,结合从遥感和地面数据中提取的关键特征如土壤湿度、植被覆盖度和地形变化等来预测地表沉降.结果表明:该模型能够准确预测露天煤矿的地表沉降,并为矿区管理和环境监测提供了有力的工具.
Monitoring and forecasting model of surface subsidence in open-pit coal mine based on remote sensing technology
We develop a surface subsidence monitoring and prediction model for open-pit coal mines based on remote sensing technology,and construct an efficient data processing process based on satellite remote sensing Landsat and Sentinel platforms for optical and synthetic aperture radar(SAR)images,which includes radiometric correction,atmospheric correction,geometric correction,and assimilation of multi-source data.Machine learning algorithms such as Support Vector Machine(SVM),Neural Network,and Random Forest are used to predict surface subsidence by combining key features extracted from remote sensing and ground data,such as soil moisture,vegetation coverage,and terrain changes.The results show that the model can accurately predict surface subsidence in open-pit coal mines and provide powerful tools for mining area management and environmental monitoring.

open-pit coal mineland surface settlementground monitoringremote sensing technologymodel training and verificationmodel prediction

苏小平

展开 >

准格尔旗昶旭煤炭有限责任公司,内蒙古 鄂尔多斯 010407

露天煤矿 地表沉降 地面监测 遥感技术 模型训练与验证 模型预测

2024

露天采矿技术
煤炭科学研究总院沈阳研究院 中煤平朔煤业有限责任公司 神华准格尔能源有限责任公司

露天采矿技术

影响因子:0.274
ISSN:1671-9816
年,卷(期):2024.39(2)
  • 10