首页|随机分布非椭球夹杂压电复合材料变分上下界

随机分布非椭球夹杂压电复合材料变分上下界

扫码查看
压电复合材料因其具有高机电耦合系数和压电常数及低密度和高声阻抗,被广泛应用于水声工程、医学和超声检测的领域.人们通过预测压电复合材料有效模量界限可以更好地优化压电复合材料的结构.目前,对于压电复合材料有效模量上下界的研究普遍集中于包含椭球形夹杂的压电复合材料,而对于非椭球形夹杂的压电复合材料研究甚少.本文在传统的Hashin-Shtrikman变分上下界方法的基础上,利用体现夹杂物分布特性及形状的微结构参数,求解横观各向同性压电复合材料有效模量的上下界.该方法适用于任意形状夹杂.当椭球域与椭球形夹杂形状相同时,该方法与传统的压电复合材料Hashi-Shtrikman上下界方法一致.当椭球域与椭球形夹杂物形状不同且夹杂含量较低时,本方法所得到的部分有效模量的上下界更紧凑.此外,本文计算了横观各向同性的压电基体含正方体夹杂的复合材料有效模量上下界,结果表明材料整体表现为横观各向同性且与椭球形夹杂时的有效模量上下界差异较小.本文建立了考虑夹杂物分布和夹杂物形状的压电复合材料上下界的计算方法,对压电复合材料的研究有一定的参考价值.
Variational Upper and Lower Bounds of Piezoelectric Composites with Randomly Distributed Non-Ellipsoidal Inclusions
Piezoelectric composite materials are widely used in underwater acoustic engineering,medicine and ultrasonic testing because of their high electromechanical coupling coefficient and piezoelectric constant,low density and high acoustic impedance.The Hashin-Shtrikman variational principle can predict the bounds of the effective modulus of composite materials,which is beneficial for the optimization of the piezoelectric composites.At present,the Hashin-Shtrikman bounds method for piezoelectric composites is suitable for ellipsoidal inclusions without considering the distribution of inclusions,but is not suitable for non-ellipsoidal inclusions.In this paper,based on the Hashin-Shtrikman variational method,the bounds of the effective modulus of transversely isotropic piezoelectric composites are solved by using the microstructure parameters reflecting the distribution characteristics and the shape of inclusions.This method is suitable for inclusions of any shape.When the ellipsoidal domain shape is the same as the ellipsoidal inclusion shape,this method is consistent with the traditional method for the bounds of Hashi-Shtrikman of piezoelectric composite materials.When the shape of the ellipsoidal domain is different from that of the ellipsoidal inclusion and the inclusion content is low,the bounds of the partial effective modulus obtained by this method are more compact.In addition,the bounds of the effective modulus of the transversely isotropic piezoelectric matrix containing square inclusions are calculated.The results show that the material is transversely isotropic and has little difference with the bounds of the effective modulus of the ellipsoidal inclusion.In this paper,the calculation method of the bounds of piezoelectric composites considering inclusion distribution and inclusion shape is established,which provides reference for the study of piezoelectric composites.

Hashin-Shtrikman boundspiezoelectric composite materialHill tensor

王宁、谢龙涛

展开 >

宁波大学机械工程与力学学院,浙江宁波 315211

Hashin-Shtrikman上下界 压电复合材料 Hill张量

国家自然科学基金

11902169

2024

力学季刊
上海市力学会 中国力学学会 同济大学 上海交通大学

力学季刊

CSTPCD北大核心
影响因子:0.289
ISSN:0254-0053
年,卷(期):2024.45(1)
  • 32