首页|组合弹性无缘轮半被动行走的混沌和同步分析

组合弹性无缘轮半被动行走的混沌和同步分析

扫码查看
本文提出了组合弹性无缘轮模型,通过加入周期振荡的间接控制,实现了组合弹性无缘轮的半被动行走.通过观察组合弹性无缘轮半被动行走的步态,分析了混沌和同步化的非线性行为.首先,建立组合弹性无缘轮半被动行走的动力学模型,使其能够实现稳定的周期行走;其次,通过对组合弹性无缘轮半被动行走的典型步态分析,表明极限环的稳定性对初始条件敏感;最后,通过观察组合弹性无缘轮半被动行走的步态,分析振荡频率与系统行走频率关系,以及振荡频率与系统行走频率的相位差与行走步数之间是否存在同步化和混沌等非线性行为.仿真结果表明,对于振荡频率与系统行走频率之间的关系,较轻的摆动质量和较小的摆动振幅呈现出同步化现象,较重的摆动质量和较大的摆动振幅呈现出混沌现象;对于振荡频率与系统行走频率的相位差与行走步数的关系,较轻的摆动质量和较小的摆动振幅呈现出混沌现象.
Chaos and Synchronization Analysis of Semi-Passive Walking of Combined Elastic Rimless Wheels
In this paper,a combined elastic rimless wheel model is proposed,and the semi-passive walking of the combined elastic rimless wheel is realized by incorporating indirect control of periodic oscillation.The nonlinear behavior of chaos and synchronization is analyzed by observing the gait of the semi-passive walking of the combined elastic rimless wheel.Firstly,the dynamics model of the semi-passive walking of the combined elastic rimless wheel is established to enable stable periodic walking.Secondly,the stability of the limit loop is shown to be sensitive to the initial conditions by analyzing the typical gait of the semi-passive walking of the combined elastic rimless wheel.Finally,the relationship between the oscillation frequency and the system walking frequency and the phase difference between the oscillation frequency and the system walking are analyzed by observing the gait of the semi-passive walking of the combined elastic rimless wheel.Finally,by observing the semi-passive walking gait of the combined elastic rimless wheel,we analyze the relationship between the oscillation frequency and the walking frequency of the system,as well as the possible nonlinear behaviors such as synchronization and chaos between the phase difference of the two frequencies and the number of walking steps.The simulation results show that for the relationship between the oscillation frequency and the walking frequency of the system,the lighter oscillation mass and smaller oscillation amplitude lead to synchronization,and the heavier oscillation mass and larger oscillation amplitude lead to chaos.For the relationship between the phase difference of the two frequencies and the number of walking steps,the lighter oscillation mass and smaller oscillation amplitude lead to chaos.

combined elastic rimless wheelsemi-passive travelindirect controlchaossynchronization

陈伟、张奇志、周亚丽

展开 >

北京信息科技大学自动化学院,北京 100192

组合弹性无缘轮 半被动行走 间接控制 混沌 同步

国家自然科学基金

12172059

2024

力学季刊
上海市力学会 中国力学学会 同济大学 上海交通大学

力学季刊

CSTPCD北大核心
影响因子:0.289
ISSN:0254-0053
年,卷(期):2024.45(1)
  • 29