首页|基于多源数据融合方法的龙卷风切向速度预测

基于多源数据融合方法的龙卷风切向速度预测

扫码查看
龙卷风具有作用范围小、持续时间短、作用强度大的特点,是自然灾害中破坏力最大的灾害之一.受限于龙卷风危险性及发生发展时空随机性,现场实测数据过于稀缺且难以收集近地面区域风场数据.鉴于此,提出了基于神经网络模型的数据融合方法,实现不同来源风场数据的融合,并对模型预测效果及泛化能力进行验证.在此基础上,对龙卷风切向速度场进行了预测.研究表明:在低涡流比龙卷风预测中,实测数据的驱动模型平均误差在35%以上,而采用数据融合驱动模型平均误差为14%以下,表明融合模型具有较好的预测精度.在高涡流比龙卷风预测中,实测数据驱动模型平均误差在28%左右,而数据融合驱动模型平均误差在10%以下,表明数据融合模型在预测高涡流比时仍保持较高精度,具有较好泛化性.融合模型重构的低涡流比风场涡核为破裂状,高涡流比风场核心区域风速明显增加,且近地面风速覆盖范围增加.该模型能获取近地面及涡核中心附近处的风场数据,同时提高了龙卷风风场空间分辨率,为龙卷风环境下结构抗风实践提供重要支撑.
Tornado Tangential Velocity Prediction Using Multi-Source Data Fusion Method
Tornado has the characteristics of small scope of action,short duration and high intensity of action,and is the most frequent and destructive disaster in natural disasters.Due to the danger and the randomness of occurrence of the tornado,the field data is scarce and it is difficult to obtain complete wind field in the field measurement.In view of this,a data fusion method based on neural network model is proposed to realize the fusion of wind field data from different sources.The prediction effectiveness and the generalization ability of the model are verified.On this basis,the tangential velocity field of tornado is predicted.The results show that the average error of the driven model of measured data is more than 35%in the forecast of tornado with low swirl ratio,while the average error of the driven model with data fusion is less than 14%,which indicates that the fusion model has better prediction accuracy.In the prediction of tornadoes with high swirl ratio,the average error of the measured data-driven model is about 28%,while the average error of the data fusion driven model is less than 10%,indicating that the data fusion model still maintains high precision and has good generalization when predicting high swirl ratio.In the reconstructed fusion model,the vortex core of the low vortex ratio wind field is fractured,and the wind speed in the core area of the high vortex ratio wind field is significantly increased,and the coverage of the near-surface wind speed is also increased.The model can obtain wind field data near the ground and near the vortex core center,and improve the spatial resolution of wind speed in tornado field,providing important support for the improvement of structural wind resistance in tornado environment.

tornadomulti-source dataneural networkdata fusionwind field prediction

胡传新、聂豪、钱帮虎、管文松、李功文、赵林

展开 >

武汉科技大学城市建设学院,湖北武汉 430065

武汉科技大学城市更新湖北省工程研究中心,湖北武汉 430065

中交公路规划设计院有限公司,北京 100010

中南建筑设计院股份有限公司,湖北武汉 430071

同济大学土木工程防灾减灾全国重点实验室,上海 200092

展开 >

龙卷风 多源数据 神经网络 数据融合 风场预测

国家重点研发计划湖北省建设科技项目湖北省高等学校优秀中青年科技创新团队计划项目

2022YFC3004105T2022002

2024

力学季刊
上海市力学会 中国力学学会 同济大学 上海交通大学

力学季刊

CSTPCD北大核心
影响因子:0.289
ISSN:0254-0053
年,卷(期):2024.45(2)
  • 9