首页|基于深度学习的车载炮驾驶室表面冲击载荷快速预测方法

基于深度学习的车载炮驾驶室表面冲击载荷快速预测方法

扫码查看
在车载炮驾驶室拓扑优化设计和刚强度分析计算中,需要明确大量的、不同射击条件下的冲击载荷。如何快速获取驾驶室表面的冲击载荷是车载炮设计中尚未解决的难题之一。本文将深度学习方法引入到驾驶室表面冲击载荷的求解中,基于卷积-多维特征LSTM神经网络,提出了一种驾驶室表面冲击载荷快速预测方法,实现了不同发射条件下驾驶室表面冲击载荷计算,求解速度接近实时级别。算例结果表明,深度学习模型的求解精度与传统CFD仿真精度相当,但求解耗时在毫秒级,大大提高了计算效率,具备离线训练、在线计算的潜力。且当驾驶室形貌特征轻微变化时,本文模型依然适用。本文成果可快速为驾驶室刚强度校核和拓扑优化提供载荷条件,有助于缩短车载炮研发周期,为车载炮系统的数字孪生模型构建奠定了基础。
A fast method based on deep learning for predicting the impact load of vehicle-mounted howitzer cab
In the topology optimization design and strength check of a vehicle-mounted howitzer cab,it is necessary to obtain plenty of impact load laws under different firing conditions.How to obtain the impact load on the cab quickly is one of the challenges in the design of a vehicle-mounted howitzer.In this paper,the deep learning(DL)method is introduced to solve the impact load on the cab.A fast prediction method for cab impact load based on a ConvLSTM multidimensional feature neural network is proposed.The calculation of the impact load on the cab under different operating conditions is achieved,and the solving speed is close to the real-time level.The numerical examples show that the accuracy of the DL model is comparable to that of traditional computational fluid dynamics(CFD)simulation,but the solving time is on the millisecond level.The computational efficiency has been greatly improved,with the potential for offline training and online computing.When there is a slight change in the morphology of the cab,the proposed model remains applicable.The results can quickly provide load conditions for cab strength checking and topology optimization,help to shorten the development period of a vehicle-mounted howitzer,and lay the foundation for the construction of a digital twin model of a vehicle-mounted howitzer system.

Vehicle-mounted howitzer designImpact loadShock waveDeep learningFast method

周梦笛、钱林方、曹从咏、陈光宋、徐亚栋、魏胜程

展开 >

School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China

Northwest Institute of Mechanical and Electrical Engineering,Xianyang 712099,China

School of Automation,Nanjing University of Science and Technology,Nanjing 210094,China

Vehicle-mounted howitzer design Impact load Shock wave Deep learning Fast method

National Natural Science Foundation of China

U2141246

2024

力学学报(英文版)

力学学报(英文版)

CSTPCD
影响因子:0.363
ISSN:0567-7718
年,卷(期):2024.40(4)