首页|多重激波/激波干扰导致的进气道唇口处极端气动载荷的研究

多重激波/激波干扰导致的进气道唇口处极端气动载荷的研究

扫码查看
对于以吸气式推进为动力的高超声速飞行器来说,多重激波/激波干扰将在进气道唇口诱导极端气动载荷,对飞行器热防护系统的设计提出更高的要求。本研究对由两道入射斜激波与弓形激波干扰产生的多重激波干扰流场下的壁面气动载荷进行了详细的理论和数值研究。伴随射流流场和双射流流场是多重激波干扰流场的两种主要模式,分别对应两道入射斜激波诱导的超声速射流由滑移线或亚声速区分隔的情况。理论分析结果表明,在相同边界条件下,双射流流场诱导的壁面峰值压力近乎伴随射流流场的两倍。为了验证理论分析结果,开展了无黏瞬态数值计算。数值计算结果验证了理论分析给出的不同干扰模式下壁面峰值压力之间的大小关系。对比理论分析和数值计算结果发现,理论预测的壁面峰值压力略低于数值计算的值。同时,本文数值验证了由两个Ⅳ型超声速射流组成的双射流流场的存在。
Study on aerodynamic loads at the inlet's cowl lip induced by multiple shock-shock interferences
For hypersonic vehicles powered by air-breathing propulsion,multiple shock-shock interferences(MSSI)tend to induce extreme aerodynamic loads at the inlet's cowl lip,imposing higher requirements on the design of the vehicle's thermal protection system.This study provides a detailed theoretical and numerical prediction on the aerodynamic loads for MSSI created by two incident oblique shock waves intersecting with the bow shock wave.Concomitant jet(CJ)and dual jet(DJ)are the two main configurations of MSSI,respectively,corresponding to the case where a slip line or a subsonic region separates the two incident-shock-induced supersonic jets.The theoretical analysis indicates that the peak pressure amplification in the DJ mode is almost twice that of the CJ mode under the same boundary conditions.Inviscid transient numerical simulations are carried out to validate the theoretical findings.The numerical results verify the relative relationship between the magnitude of the surface peak pressures induced by different interference patterns given by the theoretical analysis.It is found that the theoretically predicted surface peak pressure is slightly lower than the numerical calculations.The DJ configuration consisting of two type Ⅳ supersonic jets is numerically confirmed in this paper.

Shock wavesShock-shock interactionTheoretical analysisHysteresis

林明月、杨帆、胡宗民、韩桂来

展开 >

State Key Laboratory of High-temperature Gas Dynamics,Institute of Mechanics,Chinese Academy of Sciences,Beijing 100190,China

School of Engineering Science,University of Chinese Academy of Sciences,Beijing 100049,China

Shock waves Shock-shock interaction Theoretical analysis Hysteresis

National Key Research and Development Plan of ChinaNational Natural Science Foundation of ChinaNational Natural Science Foundation of ChinaNational Natural Science Foundation of China

2019YFA0405204121723651207235312132017

2024

力学学报(英文版)

力学学报(英文版)

CSTPCD
影响因子:0.363
ISSN:0567-7718
年,卷(期):2024.40(4)
  • 1