首页|用于振动模态可操纵性的克拉尼图形拓扑优化设计

用于振动模态可操纵性的克拉尼图形拓扑优化设计

扫码查看
经典克拉尼图形(Chladni patterns,CP)是特征向量的视觉表示,在振动分析、乐器设计、粒子操纵和分离等领域中具有广泛的应用。均质结构通常会表现出高度规则化的CP,这限制它们的应用场景。因此,实现面向应用来逆向设计结构的CP是非常重要的,而这可以通过使用拓扑优化来实现CP的逆向设计。本研究提出了一种使用基于密度的拓扑优化算法来设计结构CP的方法。优化列式中,给出了描述图形的指标函数,并以最小化特征向量和目标CP之间的误差构建了优化目标。数值结果表明,所提出的方法可以为指定的单阶或多阶CP生成新颖的材料分布。这表明了本文所提出的方法能够实现CP的精确定制设计,进一步为面向应用的需求提供了更多选择。
Topology optimization design of Chladni patterns for vibration mode manipulability
Classical Chladni patterns(CPs)are visual representations of eigenvectors,which have a wide range of applications in vibration analysis,instrument design,particle manipulation and separation.Homogeneous structures often exhibit highly regular CPs,which limits their applicability.Application-oriented CPs are highly desired and can be achieved by inverse designs using topol-ogy optimization.This study presents an optimization method for designing prescribed CPs using density-based topological optimization.The optimization problem is formulated to minimize the error between the eigenvectors and the targeted CPs.Numerical results demonstrate that the proposed method can generate design configurations for a targeted CP.Moreover,it also can create novel structural configurations for the simultaneous control of several CPs.The presented method enables the precise customized design of CPs,which further provides more options for application-oriented requirements.

Eigenvector derivativesDynamicTopology optimizationChladni pattern

薛亮、文桂林、Fengwen Wang、Niels L.Pedersen

展开 >

School of Mechanical Engineering,Yanshan University,Qinhuangdao 066004,China

Department of Civil and Mechanical Engineering,Solid Mechanics,Technical University of Denmark,Kgs.Lyngby 2800,Denmark

State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body,Hunan University,Changsha 410082,China

Eigenvector derivatives Dynamic Topology optimization Chladni pattern

Fulltime Introduction of National Highlevel Innovation Talents Research Project of Hebei ProvinceNational Natural science Foundation of ChinaVillum Foundation via the Villum Investigator Project Innotop

2021HBQZYCSB00311832009

2024

力学学报(英文版)

力学学报(英文版)

CSTPCD
影响因子:0.363
ISSN:0567-7718
年,卷(期):2024.40(4)