首页|黏结区模型在人工柔度和不连续力方面的改进

黏结区模型在人工柔度和不连续力方面的改进

扫码查看
黏结区模型在断裂扩展方面被广泛而成功的应用,但仍然存在一些基本问题被忽视需要解决。本文研究了黏结区模型中的人工柔度和不连续力。首先,介绍了关于黏结单元(局部坐标系、刚度矩阵和内部节点力)的理论。局部坐标系被定义用于获得局部分离。八节点黏结单元的刚度矩阵是从应变能的计算中导出的。黏结单元与体积单元之间的内部节点力是根据虚功原理得出的。其次,从零厚度和有限厚度的黏结单元的有效刚度角度解释了人工柔度的原因。基于有限厚度黏结单元的有效刚度,可以通过调整黏结单元的刚度来完全消除人工柔度。1D和3D模拟验证了这一结论。第三,分析了三种损伤演化方法(单调增加的有效分离、损伤因子以及有效分离和损伤因子的结合)。在恒定卸载和重新加载条件下,没有不连续力和愈合效应的单调增加的损伤因子方法显示出比其他两种方法更好的选择。所提出的改进方法已经编码到LS-DYNA用户定义材料中,并且通过落锤撕裂试验获得的模拟结果验证了这些改进。
Improvements of cohesive zone model on artificial compliance and discontinuous force
The cohesive zone model(CZM)has been used widely and successfully in fracture propagation,but some basic problems are still to be solved.In this paper,artificial compliance and discontinuous force in CZM are investigated.First,theories about the cohesive element(local coordinate system,stiffness matrix,and internal nodal force)are presented.The local coordinate system is defined to obtain local separation;the stiffness matrix for an eight-node cohesive element is derived from the calculation of strain energy;internal nodal force between the cohesive element and bulk element is obtained from the principle of virtual work.Second,the reason for artificial compliance is explained by the effective stiffnesses of zero-thickness and finite-thickness cohesive elements.Based on the effective stiffness,artificial compliance can be completely removed by adjusting the stiffness of the finite-thickness cohesive element.This conclusion is verified from 1D and 3D simulations.Third,three damage evolution methods(monotonically increasing effective separation,damage factor,and both effective separation and damage factor)are analyzed.Under constant unloading and reloading conditions,the monotonically increasing damage factor method without discontinuous force and healing effect is a better choice than the other two methods.The proposed improvements are coded in LS-DYNA user-defined material,and a drop weight tear test verifies the improvements.

Cohesive zone modelStiffness matrixArtificial complianceDamage evolution methodDiscontinuous force

Ala Tabiei、孟礼

展开 >

Department of Mechanical and Materials Engineering,University of Cincinnati,Cincinnati OH 45221-0070,USA

Cohesive zone model Stiffness matrix Artificial compliance Damage evolution method Discontinuous force

2024

力学学报(英文版)

力学学报(英文版)

CSTPCD
影响因子:0.363
ISSN:0567-7718
年,卷(期):2024.40(9)