Snapthrough response of an innovative symmetric bistable composite wing
This study presents a numerical investigation into the equilibrium shapes and snapthrough response of an innovative bistable symmetric composite wing.The proposed design is a compound plate that consists of a symmetric flat platform followed by a winglet that utilizes the modified hybrid bistable symmetric laminate recently developed in the reference.The hybrid layup of the winglet resolves the issue of losing the bistability of the unsymmetric laminate when attached to another structure.An approximate analytical model based on the Rayleigh-Ritz method is developed for the compound plate that considers the geometric nonlinearity,the clamping conditions at the wing root,and the compatibility conditions at the interface.The static equilibrium positions predicted by the model were verified against the ABAQUS finite element(FE)results and an excellent agreement was obtained.The influence of the geometrical and material parameters of the proposed design on the static equilibrium shapes and the snapthrough response was examined.The following parameters were considered:the length ratio of the flat plate to the bistable winglet,the thickness and location of the bidirectional glass epoxy layers,the load location,and the wing's tapemess and aspect ratio.All parameters were found significant,and their effects were discussed.The novelty of this work is that it presents the equilibrium shapes and the snapthrough response of a bistable laminate as a part of a bigger compliant structure,which mimics the scenario in real-life applications.