Hybrid approach for simulating flow-induced sound around moving bodies based on ghost-cell immersed boundary method
A hybrid approach based on the immersed boundary method(IBM)is developed for computation of flow-induced sound around moving bodies.In this method,a high-fidelity direct numerical simulation(DNS)solver is used to simulate the incompressible flow field.The sound field is predicted by discretizing acoustic perturbation equations(APEs)with dispersion-relation-preserving space scheme and low-dispersion and low-dissipation Runge-Kutta time integration.A sharp-interface IBM based on ghost-cell is implemented for present two-step DNS-APE approach to deal with complex moving bodies with Cartesian grids.The present method is validated through simulations of sound generation caused by flow past a rotating cylinder,an oscillating cylinder,and tandem oscillating and stationary cylinders.The sound generated by typical kinds of complicated bio-inspired locomotions,i.e.,flapping flight by wings of varied shapes and collective undulatory swimming in tandem,are investigated using present method.The results demonstrate potential of the hybrid approach in addressing flow-induced sound generation and propagation with complex moving boundaries in a fluid medium,especially for the sound characteristics of bio-mimetic flows,which might shed lights on investigations on bio-acoustics,ethology of complex animal system,and related bio-mimetic design for quietness.