首页|多源荧光光谱数据融合下的淡水浮游植物分类识别方法

多源荧光光谱数据融合下的淡水浮游植物分类识别方法

扫码查看
淡水浮游植物分类识别过程中,主要采用单一的荧光光谱数据进行特征提取,所得特征信息较为片面,分类识别结果的F1 分数偏低.为此,以多源荧光光谱数据融合为前提,提出一种新型淡水浮游植物分类识别方法.采用局部线性嵌入算法对多源荧光光谱数据进行降维处理,再通过小波分解算法提取光谱特征信息.运用独立成分分析算法标记出有效的特征信息,依托于多源荧光光谱数据融合原理结合有效特征得到全面的光谱特征信息.将光谱特征输入可解决多分类问题的支持向量机模型,生成淡水浮游植物分类识别结果.实验结果显示,在噪声比例为40%时,文中设计的分类识别方法的分类识别结果F1 分数依旧为0.95,与其他两种方法相比提高了14.74%和18.95%,分类结果更加准确.
Classification and Recognition of Freshwater Phytoplankton Based on Multi-source Fluorescence Spectrum Data Fusion
In the process of classification and recognition of freshwater phytoplankton,single fluorescence spectrum data was mainly used to extract features,and the feature information obtained was relatively one-sided,which made the F1 score of classification and recognition results low.Therefore,on the premise of multi-source fluorescence spectrum data fusion,a new classification and recognition method of freshwater phy-toplankton was proposed.The local linear embedding algorithm was used to reduce the dimension of multi-source fluorescence spectrum data,and then the wavelet decomposition algorithm was used to extract the spec-tral feature information.The independent component analysis algorithm was used to mark the effective feature information.Based on the multi-source fluorescence spectrum data fusion principle,the multi-source effec-tive spectral features were fused to output comprehensive phytoplankton spectral feature information.The spectral features was input into the support vector machine model to solve the multi classification problem,and generate the classification and recognition results of freshwater phytoplankton.The experimental results showed that the F1 score of the proposed method was 0.95 when the noise ratio was 40%,which was 14.74%and 18.95%higher than the other two methods,and the classification results were more accurate.

freshwater phytoplanktonclassification and recognition methodsmulti-source fluorescence spectrumdata fusionfeature extractionwavelet decomposition

潘玉露

展开 >

诸暨市水务集团,浙江 诸暨 311800

淡水浮游植物 分类识别方法 多源荧光光谱 数据融合 特征提取 小波分解

2024

林业调查规划
云南省林业调查规划院 西南地区林业信息中心

林业调查规划

CSTPCD
影响因子:0.45
ISSN:1671-3168
年,卷(期):2024.49(3)
  • 10