首页|改进型混合动力汽车工况预测算法的应用仿真

改进型混合动力汽车工况预测算法的应用仿真

Application Simulation of Improved Prediction Algorithm for Hybrid Electric Vehicle' s Driving Cycle

扫码查看
全局优化控制策略是一种能达到最优节能的策略,但有即时性差的缺点,车辆应用面窄.针对这一缺点,在模糊聚类理论基础上建立了一种改进的混合动力汽车工况预测算法,经过模拟仿真,此算法对行驶工况的识别和预测效果较好.在混合动力汽车应用方面,将此算法与全局优化算法相结合,仿真发现其拥有全局优化控制策略的节能优点,同时改善即时性差的缺点,可直接应用.
The global optimization control strategy is one control strategy that can get more economical fuelconsumption ,but it is less used for vehicles because the shortcoming of poor immediacy on control strategy. Theimproved prediction algorithm for hybrid electric vehicle' s driving cycle was built based on the theory of fuzzyclustering, which can identify and predict driving cycle better through simulation. It is better to combine thisalgorithm with the global optimization algorithm in the hybrid electric vehicle' s application. The simulationresult shows that it has the advantage of global optimization control strategy on fuel consumption. Theshortcoming of poor immediacy on the control strategy is improved, and it can be applied directly in hybridelectric vehicle.

hybrid electricity vehicledriving cycle forecastfuzzy clusteringglobal optimization

高建平、李晓林、郭志军

展开 >

河南科技大学车辆与动力工程学院,河南洛阳471003

混合动力汽车 工况预测 模糊聚类 全局优化

河南省重大科技攻关项目北京理工大学电动车辆国家工程实验室开放基金

0911002102002012-NELEV-03

2013

河南科技大学学报(自然科学版)
河南科技大学

河南科技大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.673
ISSN:1672-6871
年,卷(期):2013.34(2)
  • 6
  • 3