首页|融合新闻影响力衰减的碳价格多元分解集成预测

融合新闻影响力衰减的碳价格多元分解集成预测

扫码查看
新闻数据涵盖了与碳价格密切相关的政策、经济和能源等信息,对碳价格的影响具有时效性.为量化新闻影响力的衰减程度,基于词频统计和指数衰减对新闻数据提取特征,提出了 1种新闻影响力衰减时间序列的计算方法,新闻的衰减效应更准确地反映新闻对碳价格的影响程度.为提高预测精度,构建了融合新闻影响力衰减的碳价格多元分解集成预测模型,运用噪声辅助多元经验模态分解方法对碳价格和新闻数据进行多元分解,基于样本熵重构分量,使用机器学习方法对分量进行预测,加和集成得到预测结果.以湖北省碳价格为例进行实证分析.结果表明:新闻影响力指数衰减方法能有效刻画新闻与碳价格的相关性,多元分解集成模型表现出优异且稳定的预测性能.
A Multivariate Decomposition Ensemble Prediction Method for Carbon Prices Incorporating News Influence Exponential Attenuation
The news covers information closely related to carbon prices,including policies,economics,and energy.Its impact on carbon prices is time-sensitive.To quantify the degree of news influence attenuation,this paper proposes a method for calculating attenuated news influence based on word frequency statistics and exponential decay,which extracts features from news data.The decay influence of news more accurately reflects the extent of its influence on carbon prices.In order to improve prediction accuracy,this paper constructs a multivariate decomposition-ensemble prediction model of carbon prices incorporating news influence exponential attenuation.It applies noise-assisted multivariate empirical mode decomposition method to decompose the data into several subcomponents.Then the subcomponents are reconstructed based on sample entropy.Finally,machine learning methods are applied to predict the subcomponents,which are aggregated to obtain the prediction results.A case study of empirical analysis is conducted using carbon prices of Hubei province.The results show that the news influence exponential attenuation can effectively portray the correlation between news and carbon prices.The proposed multivariate decomposition-ensemble model shows excellent and stable prediction performance.

carbon price forecastingnews influenceexponential attenuationNAMEMD

张大斌、黄均杰、凌立文、胡焕玲

展开 >

华南农业大学数学与信息学院,广东广州 510642

碳价格预测 新闻影响力 指数衰减 噪声辅助多元经验模态分解 样本熵

国家自然科学基金国家自然科学基金广东省自然科学基金

71971089720010832022A1515011612

2024

河南科技大学学报(自然科学版)
河南科技大学

河南科技大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.673
ISSN:1672-6871
年,卷(期):2024.45(1)
  • 25