首页|基于SDAE的终端区气象场景模式识别方法

基于SDAE的终端区气象场景模式识别方法

扫码查看
气象条件是影响终端区航空器运行安全及效率的主要因素之一.为提高终端区气象场景模式识别精度,采用基于堆叠降噪自编码(SDAE)的聚类模型,在输入层添加随机噪声、构建 3 层自编码、逐层贪婪训练,降维后的特征作为聚类的输入,实现气象场景的模式识别.以天津滨海国际机场 2022 年气象观测数据为例,基于 SDAE与欧氏距离、汉明距离、曼哈顿距离等传统相似性距离度量方法,分别使用 K-medoids与 FCM 两种聚类方法进行验证.结果表明:基于 SDAE的相似性度量在 K-medoids 与 FCM 聚类中均表现最优,与其他相似性度量相比差异率分别达到 22.4%,12%,17.7%与 24.8%,10.7%,11.8%,且运算时间最短,证明了基于SDAE的度量、聚类效果最优,最终识别出 8 个气象场景,各场景分类清晰明确.
Terminal Area Meteorological Scenario Pattern Recognition based on SDAE
To improve the accuracy of terminal area meteorological scene pattern recognition,this study adopts a clustering model based on Stacked Denoising Autoencoder.Noise is added to the input layer,and a three-layer autoencoder is constructed for greedy layer-wise training.The reduced-dimensional features are used as inputs for clustering to achieve meteorological scene pattern recognition.The method is validated using one year of meteorological data from Tianjin Binhai International Airport.Traditional similarity distance measures such as Euclidean distance,Hamming distance,and Manhattan distance are used with both K-medoids and FCM clustering methods.The results show that the similarity measure based on SDAE performs the best in both K-medoids and FCM clustering,with a difference rate of 22.4%,12%,17.7%,and 24.8%,10.7%,11.8%compared to other similarity measures,respectively.It also has the shortest computation time,demonstrating that the SDAE-based measure and clustering achieve the best performance.Ultimately,eight meteorological scenes are identified with clear and distinct classifications.

meteorological characteristicsstacked denoising autoencoderK-medoidsFCM

杨新湦、罗秋晴、张召悦

展开 >

中国民航大学 空中交通管理学院,天津 300300

气象特征 堆叠降噪自编码 K-medoids FCM

国家自然科学基金青年科学基金国家重点研发计划

71801215oldKJZ25420200012

2024

河南科技大学学报(自然科学版)
河南科技大学

河南科技大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.673
ISSN:1672-6871
年,卷(期):2024.45(2)
  • 8