首页|一种改进的视觉词包模型的船舶识别方法

一种改进的视觉词包模型的船舶识别方法

扫码查看
船舶识别在船舶贸易和军事活动中具有重要意义.目前的研究主要依赖于深度学习的方法,但这类方法对数据集规模和硬件要求较高,通常需要GPU等高性能硬件,限制了其在实际应用中的推广.针对这一挑战,提出了一种改进的视觉词包模型,用于快速识别船舶目标.首先利用SIFT和SURF方法提取船舶图像的局部特征,并将两种特征进行快速匹配和融合.随后,采用基于图论的方法确定图像的感兴趣区域(ROI),以减少背景的影响.接着,通过聚类算法将ROI区域内的特征转换为视觉单词,并构建视觉词典,从而用视觉单词直方图描述每幅图像.该方法还采用空间金字塔核式模型描述图像特征之间的空间关系,并通过支持向量机进行有监督的学习分类.在模型中,视觉词典的大小和分辨率水平是关键参数,通过实验对其进行了深入研究.当视觉词典大小设置为300,分辨率水平设置为2时,模型的准确率、精确率超过了 96%,实验结果验证了该模型的有效性.
An Improved Ship Recognition Method Based on Bag-of-Visual-Words
Ship identification plays a critical role in maritime trade and military activities.Current research largely relies on deep learning-based methods,which demand extensive datasets and high-end hardware,often necessitating GPUs.This requirement significantly limits their practical application.Addressing this challenge,this paper introduces an enhanced bag-of-visual-words(BoVW)model based on classical computer vision techniques for rapid ship identification.The proposed method initially employs SIFT and SURF techniques to extract local features from ship images,followed by rapid matching and fusion of these features.A graph-theoretic approach is then used to determine the regions of interest(ROI)within the image,reducing background interference.Subsequently,clustering algorithms transform features within the ROIs into visual words and construct a visual dictionary.Each image is described using histograms of visual words.The method also employs a spatial pyramid kernel to represent spatial relationships between image features and uses support vector machines(SVM)for supervised learning classification.Key parameters in the model include the size of the visual dictionary and the resolution level.Extensive experiments were conducted to explore these parameters.When the visual dictionary size was set to 300 and the resolution level to 2,the model achieved an accuracy and precision exceeding 96%,validating the effectiveness of the proposed method.

bag of visual wordslocal featurefeature matchingship imagerecognition

李连民、孙立功、孙士保

展开 >

河南科技大学软件学院,河南洛阳 471023

视觉词包模型 局部特征 特征融合 船舶图像 识别

国家自然科学基金项目龙门实验室自由探索课题

62101478LMQYTSKT034

2024

河南科技大学学报(自然科学版)
河南科技大学

河南科技大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.673
ISSN:1672-6871
年,卷(期):2024.45(4)
  • 1