首页|基于深度学习的木板材表面缺陷识别算法研究

基于深度学习的木板材表面缺陷识别算法研究

扫码查看
我国是木材及木制品的生产、制造和出口大国,木板材表面缺陷会降低木板材的外在品质和内部强度,进而影响木材的加工生产过程.基于自制的木材表面缺陷数据集,在YOLOv5s模型上针对时下主流的几种损失函数进行了综合测试与对比分析.旨在拓展深度学习模型在木材缺陷检测领域的应用,以期为木材表面缺陷自动化检测提供新思路.
Research on Wood Surface Defect Recognition Algorithm Based on Deep Learning
China is a large country in the production,manufacturing and export of wood and wood products,and the surface defects of wood panels will reduce the external quality and internal strength of wood panels,which will affect the processing and production process of wood.Based on the self-made wood surface defect data set,this paper con-ducts comprehensive testing and comparative analysis of several mainstream loss functions on the YOLOv5s model.This paper aims to expand the application of deep learning model in the field of wood defect detection,in order to provide a new idea for automatic inspection of wood surface defects.

wood plankdefect identificationloss functionYOLOv5sautomatic detect

沈锦桃、王祺、李欢、孔维亮、钱绍祥

展开 >

镇江中福马机械有限公司,江苏镇江 212127

镇江高等专科学校,江苏镇江 212310

木板材 缺陷识别 损失函数 YOLOv5s 自动化检测

2024

林业机械与木工设备
国家林业局哈尔滨林业机械研究所

林业机械与木工设备

影响因子:0.574
ISSN:2095-2953
年,卷(期):2024.52(5)