首页|基于改进YOLOv8的杂草检测算法

基于改进YOLOv8的杂草检测算法

扫码查看
针对杂草检测中检测率低,存在漏检及误检的情况,提出一种基于YOLOv8的改进型杂草检测算法.在骨干网络中加入可变性卷积,引入可学习的卷积核以有效提高杂草的识别率;引入GCNet全局注意力机制,模型将更多的注意力放在待检测杂草上,降低漏检及误检率.构建杂草数据集并进行试验验证,结果表明改进后的算法精确度、召回率和mAP分别提高2.7%、2.2%和5.5%,可有效解决杂草检测中漏检及误检的情况,实现杂草的精确检测,研究可为智能除草机器人的开发提供参考.
Weed Detection Algorithm based on Improved YOLOv8
Aiming at the low detection rate,missed detections,and false detections in weed detection,an improved weed detection algorithm based on YOLOv8 is proposed.Add variable convolution to the backbone network and intro-duce learnable convolution kernels to effectively improve the recognition rate of weeds;Introducing the GCNet global attention mechanism,the model focuses more attention on the weeds to be detected,reducing missed and false detec-tion rates.Constructing a weed dataset and conducting experimental verification,the results showed that the improved algorithm improved accuracy and recall by 2.7%、2.2%and 5.5%respectively.It can effectively solve the problems of missed and false detections in weed detection,achieve precise weed detection,and provide reference for the de-velopment of intelligent weed control robots.

weeds detectionYOLOv8attention mechanism

何存财、万芳新、牟晓斌、谢文斌、吴向峰、于天祥、马国军

展开 >

甘肃农业大学机电工程学院,甘肃兰州 730070

杂草检测 YOLOv8 注意力机制

甘肃省重点研发计划

23YFNA0014

2024

林业机械与木工设备
国家林业局哈尔滨林业机械研究所

林业机械与木工设备

影响因子:0.574
ISSN:2095-2953
年,卷(期):2024.52(9)