首页|基于YOLOv7的木材缺陷检测模型Wood-Net的研究

基于YOLOv7的木材缺陷检测模型Wood-Net的研究

扫码查看
为改善利用人工方式识别木材缺陷存在的效率低、人工成本高的问题,同时实现在木材加工过程中使用新兴方式对不同的缺陷进行快速准确检测以提高木材利用率,针对现有的目标检测网络在木材缺陷检测方面存在诸如检测精度低、报错率高以及识别种类少等局限,设计了用于木材缺陷检测的深度学习网络Wood-Net。Wood-Net将注意力机制ECA(efficient channel attention module)引入Y OLOv7的主干网络,以便更好地区分木材缺陷之间的细微差别;将ECA与Res2Net结合后形成ECA-Res2Net模块,ECA-Res2Net模块克服了单纯的Res2Net跨通道交流能力不足的问题,增强了网络对更细粒度特征的提取能力;将ECA-Res2Net模块与SPPCSPC(spatial pyramid pooling and channel spatial pyramid convolution)并联形成 ResSPPCSPC 模块,增加了描述图像本身特征数量的能力,由此构成新方法Wood-Net。本研究将准确度、召回值、mAP@0。5以及mAP@0。5:mAP@0。95 4个数值作为系统性能的评价指标。利用自建数据集训练Wood-Net,得到试验数据。试验结果表明:Wood-Net模型比基准模型YOLOv7在木材优选上精确率提高了4。52%,mAP@0。5:mAP@0。95提高了6。62%;比基准模型YOLOv5s在木材优选上精确率提高了6。79%,mAP@0。5:mAP@0。95提高了5。67%。ECA注意力机制能够有效提升E-ELAN的通道间信息交互能力;Res2Net模块具有很强的细粒度特征提取能力,在网络中引入Res2Net模块后,网络各项性能指标收敛速度快,在Res2Net中加入ECA后能够使单纯的Res2Net考虑多通道特征之间的关系,完成信息融合,提高检测性能。
Research on wood defect detection model Wood-Net based on YOLOv7
In order to improve the low efficiency and high labor cost of manual wood defect identification,and to achieve rapid and accurate detection of different defects during wood processing for enhancing wood utilization,this study addresses the limitations of existing object detection networks in wood defect detection,such as low detection accuracy,high false positive rate,and limited recognition categories.A deep learning network for wood defect detec-tion named Wood-Net was designed.Wood-Net incorporated the efficient channel attention(ECA)mechanism into the backbone network of YOLOv7 to better differentiate subtle differences among wood defects.The combination of ECA and Res2Net formed the ECA-Res2Net module,which overcame the insufficient inter-channel communication capability of Res2Net and enhanced the network's ability to extract more fine-grained features.The ECA-Res2Net module was then combined with the spatial pyramid pooling and channel spatial pyramid convolution(SPPCSPC)in the ResSPPCSPC module,which increased the descriptive capacity of the image's own features,resulting in the novel Wood-Net method.Precision,recall,mAP@0.5 and mAP@0.5:mAP@0.95 were used as evaluation metrics for the system performance.Wood-Net was trained using a self-built dataset,and experimental data was obtained.The results showed that the Wood-Net model achieved a 4.52%improvement in precision and a 6.62%improvement in mAP@0.5:mAP@0.95,compared to the baseline model YOLOv7 in wood selection.It also outperformed the baseline model YOLOv5s with a 6.79%improvement in precision and a 5.67%improvement in mAP@0.5:mAP@0.95.The ECA attention mechanism effectively enhanced the inter-channel information interaction of E-ELAN.The Res2Net module had strong capability in extracting fine-grained features,and its introduction into the network im-proved the convergence speed of various performance indicators.Addition of ECA to Res2Net enabled the considera-tion of inter-channel relationships and accomplishes information fusion,leading to improved detection performance.

Wood-Netwood optimizationECA-Res2NetECARes2Net

王正、江莺、严飞、孙佑鹏、张园、张柳磊

展开 >

南京林业大学机械电子工程学院,南京 210037

Wood-Net 木材优选 ECA-Res2Net ECA Res2Net

江苏省创新支撑计划

BZ2022037

2024

林业工程学报
南京林业大学

林业工程学报

CSTPCD北大核心
影响因子:0.742
ISSN:2096-1359
年,卷(期):2024.9(1)
  • 1
  • 2