首页|基于沙柳冠层可见-近红外光谱的热值预测

基于沙柳冠层可见-近红外光谱的热值预测

扫码查看
热值是灌木生物质能源利用的重要燃烧性能参数之一。针对传统实验室检测方法破坏性大、费时费力、无法实现大量样本的快速检测问题,探讨了沙柳冠层可见-近红外光谱(Vis-NIR)结合不同化学计量学方法预测沙柳热值的精度差异。采用标准正态变量变换(SNV)、归一化数据(normalize)、标准正态变量变换+归一化数据和第二代小波变换即提升小波变换(LWT)对冠层光谱进行预处理,采用偏最小二乘法(PLS)和卷积神经网络(CNN)构建了沙柳热值可见-近红外模型。同时,对比分析了鲸鱼优化算法(WOA)、麻雀搜索算法(SSA)和灰狼优化算法(GWO)对CNN模型参数的优化效果。结果表明:当采用db4 小波进行 5 层分解后,其对沙柳冠层可见-近红外光谱的去躁效果最好,基于LWT-WOA-CNN法构建的沙柳热值可见-近红外模型的预测精度最优,校正模型的决定系数(R2)、均方根误差(RMSE)和相对分析误差(RPD)分别为 0。852,0。103 和 2。599,RPD值较原始的PLS和CNN模型分别提高 19。11%和 76。80%。该研究可为沙柳生物质能源的高效、精细化利用提供技术支撑。
Prediction of calorific value of Salix psammophila using canopy visible and near infrared spectra
Calorific value is one of the important combustion performance parameters for shrub biomass energy utilization.In order to compensate the shortcomings of the destructive,time-consuming,and laborious detection of a large number of samples for traditional laboratory detection methods,this study aimed at investigating the accuracy difference of visible and near infrared spectroscopy(Vis-NIR)combined with various chemometric methods to predict the calorific values of Salix psammophila.Firstly,the spectral transform technique was used to analyze the performance of two kinds of canopy Vis-NIR spectra of S.psammophila,namely reflectance spectra(R)and logarithm reflectance spectra(lg(1/R)).The optimal canopy Vis-NIR spectra of S.psammophila were preprocessed by various optimization algorithms including standard normalized variate(SNV),normalization,combination of SNV and normalization,and lifting wavelet transform(LWT)methods.Meanwhile,the de-noising performance of LWT based on different de-noi-sing parameters including mother wavelet,wavelet orders and decomposition levels was also analyzed in this study.Then the canopy Vis-NIR spectra processed by the optimal pre-processing method were inputted into convolutional neural net-work(CNN)model.Finally,as for the parameters selection of CNN models,three optimization techniques including whale optimization algorithm(WOA),grey wolf optimizer(GWO),and sparrow search algorithm(SSA)were em-ployed to optimize three main parameters of CNN models including learning rate,batch size,and regularization coeffi-cient.Among these pre-treatment methods,LWT obtained the best de-noising results based on db mother wavelet with wavelet orders and decomposition levels of 4 and 5,respectively.In terms of Vis-NIR models optimization of calorific value prediction of S.psammophila,the results demonstrated that the optimal model was achieved using LWT combined with WOA-CNN method with the coefficient of determination(R2),root mean square error(RMSE)and ratio of per-formance to standard deviation(RPD)of 0.852,0.103 and 2.599,respectively.In addition,the optimal parameters of learning rate,batch size,and regularization coefficient were achieved for CNN models based on WOA.The RPD value increased by 19.11%and 76.80%in comparison to the PLS and CNN models using raw spectra.These results provide data support for the efficient and refined utilization for S.psammophila biomass energy.

Salix psammophilacanopy spectravisible and near infrared spectroscopycalorific valuechemometrics

李颖、王继璇、兰小桢、马艺诚、韩兆敏、裴志永

展开 >

内蒙古农业大学能源与交通工程学院,呼和浩特 010018

鄂尔多斯市云东生态产业开发有限公司,鄂尔多斯 017000

内蒙古自治区林业和草原监测规划院,呼和浩特 010020

沙柳 冠层光谱 可见-近红外光谱 热值 化学计量学

内蒙古自治区自然科学基金内蒙古自治区科技计划"科技兴蒙"行动重点专项内蒙古自治区引进人才待遇项目

2021BS030192020GG0078KJXM-EEDS-2020009DC2100001417

2024

林业工程学报
南京林业大学

林业工程学报

CSTPCD北大核心
影响因子:0.742
ISSN:2096-1359
年,卷(期):2024.9(2)
  • 22