首页|基于GIS和多种机器学习算法的广东省森林火灾预测模型

基于GIS和多种机器学习算法的广东省森林火灾预测模型

扫码查看
森林火灾是严重的自然灾害,造成严重的森林资源破坏和社会经济损失。广东省是我国森林火灾高发区之一,针对该区域的森林火灾发生特点,准确预测可提供有效的防范措施。大多数森林火灾预测研究仅从气象因素或少数特征因素出发考虑,并未考虑到森林火灾的发生的复杂性以及预测准确率较低的问题。因此,本研究提出一种基于GIS和机器学习结合的高准确率的森林火灾预测方法,将XGBoost(eXtreme gradent boosting,XGB)、Light GBM(light gradient boosting machine)、CatBoost(categorical boosting)、深度神经网络(DNN)、随机森林(RF)5种机器学习算法作为预测模型;基于气象数据、地形数据、植被数据、基础设施数据、社会和人类数据,选择了 24个特征因素作为模型输入。从更多林火发生特征因素出发,构建广东省日尺度林火发生预测模型;同时引入基于Optuna框架的贝叶斯自动超参数优化方法,其自动超参数优化特性,在面对不同数据结构时可以自动优化参数组合,提升林火预测模型的准确率。结果表明,XGBoost模型最优,准确率为91。30%;利用2018年的数据验证林火预测模型,其验证准确率结果为87。81%;利用GIS绘制广东省森林火灾风险图,同时模型准确率明显优于其他研究的林火预测模型。本研究可为广东省林业防火提供科学参考。
Forest fire prediction models for Guangdong Province based on GIS and multiple machine learning algorithms
Forest fires represent a grave natural disaster,causing extensive damage to forest resources and significant socio-economic losses.Since Guangdong Province is one of the high-risk areas for forest fires in China,there is a need to develop crucial tools for accurate predictions to effectively prevent and mitigate forest fires.Most forest fire prediction studies have traditionally focused on a limited number of factors,often neglecting the complexity of fire oc-currences and suffering from lower prediction accuracy.Hence,this study proposed a high-accuracy forest fire predic-tion method that combines GIS(geographic information system)and machine learning.Five machine learning algo-rithms,namely XGBoost(eXtreme gradient boosting,XGB),Light GBM(light gradient boosting machine),Cat-Boost(categorical boosting),deep neural networks(DNN),and random forests(RF),were utilized as predictive models.The inclusion of meteorological,topographical,vegetation,infrastructure,social,and human data encom-passed 24 feature factors as inputs for the models.By considering a broader range of factors related to forest fire occur-rences,this approach aimed at constructing a more comprehensive daily scale prediction model.Furthermore,the Bayesian automatic hyperparameter optimization method within the Optuna framework was introduced.This automated optimization feature adapted to different data structures,enhancing the accuracy of forest fire prediction models by au-tomatically optimizing parameter combinations.The results demonstrated that the XGBoost model emerged as the top performer with an accuracy rate of 91.30%.The forest fire prediction model was validated using data from 2018,achieving a validation accuracy of 87.81%.By utilizing GIS,a forest fire risk map of Guangdong Province was craf-ted.Furthermore,the developed model exhibited a conspicuously superior accuracy compared to other extant predictive models for forest fires.This study holds the potential to furnish valuable scientific insights for wildfire pre-vention in the forestry sector of Guangdong Province,China.

forest firemachine learningGISXGBoostOptuna hyperparameter optimizationGuangdong Province

朱龙祥、王自法、张昕、韩赟希、周良辰

展开 >

河南大学土木建筑学院,开封 475004

中国地震局工程力学研究所,哈尔滨 150080

中震科建(广东)防灾减灾研究院,韶关 512026

东海实验室,舟山 316000

深圳防灾减灾技术研究院,深圳 518003

展开 >

森林火灾 机器学习 GIS XGBoost Optuna超参数优化 广东省

中国地震局工程力学研究所基本科研业务费专项国家自然科学基金深圳市科技计划东海实验室项目国家自然科学基金青年基金

2021B0951978634JCYJ20220818103215031DH-2023QD000242305038

2024

林业工程学报
南京林业大学

林业工程学报

CSTPCD北大核心
影响因子:0.742
ISSN:2096-1359
年,卷(期):2024.9(3)