首页|基于遥感图像的农作物干旱检测方法

基于遥感图像的农作物干旱检测方法

扫码查看
针对目前基于遥感图像的农作物干旱检测方法准确率较低的问题,提出了一种基于编码-解码神经网络的图像检测方法。该方法以深度残差神经网络为特征提取主干网络,结合多尺度注意力池化和多尺度空洞卷积技术,通过有效融合高层和低层特征信息,减少信息损失,增强特征提取效果和农作物干旱边界的识别效果。使用该方法进行基于遥感图像的干旱检测,像素精度为91。05%,平均像素精度为76。19%,结果明显优于其他现有模型。
Research on Crop Drought Detection Based on Remote Sensing Images
Due to low accuracy of current crop drought detection methods based on remote sensing images,this paper proposed an image detection method based on the coding-decoding neural network.In this meth-od,the deep residual neural network was used as the main network for feature extraction,and multi-scale attention pooling and multi-scale atrous convolution techniques were combined to reduce information loss and enhance effects of feature extraction.By effectively fusing high-level and low-level feature informa-tion,the recognition effect of crop drought boundary improved.The experimental results showed that this method achieved pixel accuracy of 91.05%and average pixel accuracy of 76.19%in drought detection based on remote sensing images,which was obviously superior to other existing models.

remote sensing imagescoding-decoding neural networkcropsdrought detectionmulti-scale attention pooling

张江南、李吉龙、王永杰、吕文羽、于瑷源、李文博

展开 >

青岛农业大学网络信息管理处,山东青岛 266109

济南浪潮数据技术有限公司,山东济南 250014

中国人民解放军93046部队,山东青岛 266111

青岛农业大学理学与信息科学学院,山东青岛 266109

展开 >

遥感图像 编码-解码神经网络 农作物 干旱检测 多尺度注意力池化

2024

青岛农业大学学报(自然科学版)
青岛农业大学

青岛农业大学学报(自然科学版)

影响因子:0.37
ISSN:1674-148X
年,卷(期):2024.41(4)