首页|基于Mask R-CNN模型的砀山酥梨目标检测

基于Mask R-CNN模型的砀山酥梨目标检测

扫码查看
目标识别对实现水果产业采摘自动化至关重要,但在自然环境下传统检测算法对酥梨果实识别效果不好。基于Mask R-CNN(mask region-convolutional neural network)神经网络模型,结合砀山酥梨图像的样本数据库,通过特征金字塔网络提取图像特征,运用RPN(region proposal network)网络处理特征图,对砀山酥梨目标检测效果进行分析。结果表明:采用Mask R-CNN模型检测的准确率为95。54%,召回率为92。79%,误检率为4。45%;Mask R-CNN模型能够在果实被枝叶遮挡、未被枝叶遮挡、果实重叠等场景下精准检测出酥梨图像的完整轮廓。为采摘机器人检测酥梨目标提供了技术支持。
Dangshan Pear Target Detection Based on Mask R-CNN
Target recognition is of vital importance to picking automation in the fruit industry,but the tra-ditional detection algorithm is not sufficient to recognize pears in the natural environment.Based on the Mask R-CNN(mask region-convolutional neural network)model,and combined with the sample database of Dangshan pear images,image features were extracted by the feature pyramid network(FPN),the fea-ture map was processed by RPN(region proposal network),and then the effectiveness of Dangshan pear target detection was analyzed.Results showed that the accuracy of Mask R-CNN model for Dangshan pear target detection was 95.54%,the recall was 92.79%,and the false rate was 4.45%.This Mask R-CNN model could detect the complete outlines of Dangshan pears accurately in situations where fruits were ob-structed by branches and leaves,or not obstructed by branches and leaves,or overlapped,etc.It provides technical support for picking robots to detect pear targets.

Dangshan peartarget detectiondeep learningMask R-CNN

王永惠、曹浩

展开 >

安徽科技学院机械工程学院,安徽滁州 233100

安徽科技学院信息与网络工程学院,安徽蚌埠 233030

砀山酥梨 目标检测 深度学习 Mask R-CNN

2024

青岛农业大学学报(自然科学版)
青岛农业大学

青岛农业大学学报(自然科学版)

影响因子:0.37
ISSN:1674-148X
年,卷(期):2024.41(4)