首页|一类二阶哈密顿系统解的多重性

一类二阶哈密顿系统解的多重性

扫码查看
为证明一类二阶哈密顿系统无穷多解的存在性,运用 Bolle 提出的连续性方法,首先得到一类算子方程有无穷多解的结论,然后将该结论应用于带有非齐次边界条件的二阶哈密顿系统,得到其无穷多解存在性的结果.
Multiplicity of Solutions for a Class of Second-order Hamiltonian System
This research aims to prove the existence of infinitely many solutions for a class of second-order Hamiltonian systems.This research firstly proves the existence of infinitely many solutions for a class of operator e-quations by means of Bolle's continuity method,and then reaches the conclusion by applying the per-conclusion in the second-order Hamiltonian systems with non-homogeneous boundary conditions.

continuity methodnon-homogeneous boundary conditionssecond-order Hamiltonian systeminfinitely many solutions

潘俊蓬、陈莹莹

展开 >

华北水利水电大学 数学与统计学院,河南 郑州 450046

连续性方法 非齐次边界条件 二阶哈密顿系统 无穷多解

2024

洛阳师范学院学报
洛阳师范学院

洛阳师范学院学报

CHSSCD
影响因子:0.219
ISSN:1009-4970
年,卷(期):2024.43(2)
  • 6