首页|基于TPE优化深度森林模型的电力负荷预测

基于TPE优化深度森林模型的电力负荷预测

扫码查看
提出了一种基于TPE树结构优化方法的深度森林模型,用于预测某市三个区域的电力负荷.首先,针对数据冗余及特征间波动较大的问题,进行了数据清洗;其次,依据时空关联性,采用改进的K-means++聚类方法,将具有相似天气条件的不同地区数据归类;最后,利用TPE算法优化的深度森林模型,对同一区域内不同类别的电力负荷趋势进行预测.实验结果显示:提出的预测模型相较于未经TPE算法优化的深度森林模型,性能更为优异,同时也优于单一的机器学习算法模型及其简单集成形式,展现出了更高的拟合度和更低的误差.
Electric Power Load Forecasting Based on TPE-optimized Deep Forest Model
A deep forest model based on TPE tree structure optimization algorithm is proposed to predict the electric power load of three regions in a city.First,the data was cleaned to address the issues of data redundancy and large fluctuations in data characteristics.Secondly,according to the spatial-temporal correlation,the improved K-means++clustering method is used to classify the data of different regions with similar weather conditions.Fi-nally,the deep forest model optimized by TPE algorithm is used to predict the trend of electric power load of differ-ent types in the same area.The experimental results show that compared with the deep forest model without TPE al-gorithm optimization,the proposed prediction model has better performance,and it is also superior to the single ma-chine learning algorithm model and a simple integration between models,showing higher fitting degree and lower er-ror.

meteorological factortree structure optimization algorithmdeep forestelectric power load

王誉、陈超

展开 >

四川轻化工大学 计算机科学与工程学院,四川 宜宾 644000

气象因子 树结构优化算法 深度森林 电力负荷

2024

洛阳师范学院学报
洛阳师范学院

洛阳师范学院学报

CHSSCD
影响因子:0.219
ISSN:1009-4970
年,卷(期):2024.43(11)