首页|基于多特征融合的百香果品质识别分类方法

基于多特征融合的百香果品质识别分类方法

扫码查看
百香果销售需按外观和口感的品质进行分类定价.目前分类主要针对果实外表进行人眼判断,易受视觉疲劳和主观经验影响,缺乏量化标准.基于此种情况提出一种基于机器视觉多特征融合的方法对百香果品质进行自动识别并分类.分别提取百香果的颜色和纹理表观特征进行优化并融合,然后使用SVM分类器对融合特征与果实果糖含量高低进行二分类关联训练和预测.实验结果的分类准确率最高可达到91.48%,表明百香果的外观特征与口感品质有较大的关联性.由此可见采用机器视觉方法对百香果以及其他水果的外观特征进行品质判断具有较高的可行性.其中所使用的算法实现简单,计算速度快,效果良好,具有很大的应用价值.
Methods for Identifying and Classifying Quality of Passion Fruit Based on Multi Feature Fusion
Passion fruit sales need to be classified and priced based on quality including appearance and taste.Recently,the quality assessment is a manual operation mainly relying on human eye judgment and lack of quantitative standards,which is easily influenced by visual fatigue and subjective experience.We propose a multi-feature fusion method based on computer vision to automatically assess the quality of passion fruit.Extract the color and texture apparent features of passion fruit separately for fusion and optimization first;then an SVM classifier is used to perform binary correlation training and prediction between the fused features and the fruit fructose content.The highest classification accuracy of the experimental results can reach 91.48%,indicating a significant correlation between the appearance characteristics of passion fruit and its taste quality and using machine vision to quality recognition of passion fruit and other fruits has high feasibility.The algorithm used is simple,fast and effective,and with great application value.

Passion fruitquality assessmentcolor histogramGLCMfeature fusionSVM

谢秀珍、黄婷、张晓梅、王雯娟

展开 >

龙岩学院 福建龙岩 364000

百香果 品质识别 颜色直方图 灰度共生矩阵 特征融合 SVM

福建省教育厅中青年教师教育科研项目龙岩学院教育教学改革研究项目(第五批)

JAT2005952019JY23

2024

龙岩学院学报
龙岩学院

龙岩学院学报

影响因子:0.192
ISSN:1673-4629
年,卷(期):2024.42(2)
  • 27