首页|融合动态小孔成像的鲸鱼优化算法

融合动态小孔成像的鲸鱼优化算法

扫码查看
针对鲸鱼优化算法容易陷入局部最优和收敛精度低等缺点,提出了一种融合动态小孔成像策略的改进鲸鱼优化(DPIWOA)算法.动态小孔成像策略与普通的反向学习策略相比,可以产生更多样化的对立点,使用该策略可以加快算法的收敛速度和提高收敛精度,同时也可以避免算法在迭代过程中陷入局部最优.通过23 个基准测试函数的实验结果表明,DPIWOA在收敛速度和寻优精度等方面均有提升,验证了改进策略的有效性和实用性.
Whale Optimization Algorithm Fused with Dynamic Pinhole Imaging
Aiming at the shortcomings of whale optimization algorithm(WOA),which is easy to fall into local optimum and low convergence accuracy,an improved whale optimization algorithm(DPIWOA)combined with dynamic pinhole imaging strategy is proposed.Compared with the ordinary opposition learning strategy,the dynamic pinhole imaging strategy can generate more diverse opposition points.Using this strategy can speed up the convergence speed and improve the convergence accuracy of the algorithm and can also avoid the algorithm from falling into local problems during the iterative process.The experimental results on 23 benchmark functions show that DPIWOA has improved in terms of convergence speed and optimization accuracy,which verifies the effectiveness and practicability of the improved strategy in this paper.

whale optimization algorithmdynamic pinhole imagingreverse learningbenchmark function test

杜一龙、贾鹤鸣、李政邦、张津瑞、卢程浩

展开 >

黑龙江八一农垦大学 黑龙江大庆 163000

三明学院 福建三明 365004

福建理工大学 福建福州 350118

鲸鱼优化算法 动态小孔成像 反向学习 基准函数测试

福建省自然科学基金面上项目

2021J011128

2024

龙岩学院学报
龙岩学院

龙岩学院学报

影响因子:0.192
ISSN:1673-4629
年,卷(期):2024.42(2)
  • 15