首页|ARIMA乘积季节模型在山东省肺结核月报告发病率预测中的应用

ARIMA乘积季节模型在山东省肺结核月报告发病率预测中的应用

扫码查看
目的 应用专家建模器建立ARIMA乘积季节模型,分析其在肺结核月报告发病率预测中的适用性。方法 应用SPSS专家建模器对2017年1月-2021年12月山东省肺结核月报告发病率资料自动建立ARIMA乘积季节模型,预测2022年1-12月发病率并与观测值比较,评估预测效果。结果 ARIMA(1,0,0)(0,1,1)12为最简模型,该模型的R2、MAPE、正态化BIC分别为0。588、6。820、-2。459;预测结果显示,预测波动趋势与实际一致,观测值均在预测值的95%可信区间范围内,相对误差1。79%~46。71%。结论 应用专家建模器建立ARIMA乘积季节模型操作简单,适于对肺结核月报告发病率进行短期预测。
APPLICATION OF ARIMA MULTIPLE SEASONAL MODEL IN PREDICTING THE INCIDENCE OF TUBERCULOSIS IN MONTHLY REPORT
Objective To establish the ARIMA multiple seasonal model with an expert modeler to ana-lyze its applicability in predicting the incidence of tuberculosis in monthly report.Methods SPSS expert modeler was used to automatically establish an ARIMA multiple seasonal model with the incidence rate of tuberculosis in Shandong Province from January,2017 to December,2021 to predict the incidence rate from January to December of 2022 and to compare the result with the observed data to evaluate the predic-tion effect.Results ARIMA(1,0,0)(0,1,1)12 was the simplest model,and the R2,MAPE and normal-ized BIC of this model were 0.588,6.820 and-2.459 respectively.The results showed that the predicted fluctuation trend was consistent with the real data,and the observed values were all within the 95%confi-dence interval of the predicted value,with a relative error between 1.79%and 46.71%.Conclusion ARIMA multiple seasonal model is simple and suitable for short-term prediction of the monthly reported incidence of tuberculosis.

Expert modelerTuberculosisARI-MA modelPredict

梁士强、高丽洁、张子悦、杨亮、孙怡

展开 >

费县疾病预防控制中心,山东费县 273400

山东医学高等专科学校,山东临沂 276000

专家建模器 肺结核 ARIMA模型 预测

2024

山东医学高等专科学校学报
山东医学高等专科学校

山东医学高等专科学校学报

影响因子:0.542
ISSN:1674-0947
年,卷(期):2024.46(4)
  • 5