首页|面向缪子成像的计算神经动力学算法

面向缪子成像的计算神经动力学算法

A computational neural dynamics algorithm for solution of muon radiography

扫码查看
基于缪子成像中需考虑被测物体密度的双端约束以及噪声对探测数据的影响,提出一种面向缪子成像的计算神经动力学算法,可保证结果处于约束范围内.理论分析结果表明,在无噪声或恒定噪声的情况下,该算法全局收敛于缪子成像的理论解,并能有效抑制随机噪声.仿真结果表明,该算法在求解缪子成像问题时具有有效性和优越性.
Based on the double bound limits of the density of the measured object and the influence of noise on the measurement data,a computational neural dynamics algorithm for muon imaging was pro-posed,which can ensure that the results are within the constraint range.A theoretical analysis showed that,under the condition of no noise or constant noise,the algorithm converged globally to the theoretical solution of muon radiography,and could effectively suppress random noise.The simulation and compari-son results showed that the algorithm was effective and superior in solving the inversion problem.

computational neural dynamics algorithmcosmic ray muon radiographydouble bound lim-itinversion

刘梅、任永杰、金龙、刘军涛

展开 >

兰州大学 信息科学与工程学院,兰州 730000

兰州大学 核科学与技术学院,兰州 730000

计算神经动力学算法 宇宙射线缪子成像 双端约束 反演

2024

兰州大学学报(自然科学版)
兰州大学

兰州大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.855
ISSN:0455-2059
年,卷(期):2024.60(1)