兰州大学学报(自然科学版)2024,Vol.60Issue(1) :98-105.DOI:10.13885/j.issn.0455-2059.2024.01.013

基于割集矩阵算法风速监测智能优化

Intelligent optimization of wind speed monitoring based on cut-set matrix algorithm

贾瞳 马恒 高科
兰州大学学报(自然科学版)2024,Vol.60Issue(1) :98-105.DOI:10.13885/j.issn.0455-2059.2024.01.013

基于割集矩阵算法风速监测智能优化

Intelligent optimization of wind speed monitoring based on cut-set matrix algorithm

贾瞳 1马恒 1高科1
扫码查看

作者信息

  • 1. 辽宁工程技术大学 安全科学与工程学院,矿山热动力灾害与防治教育部重点实验室,辽宁 葫芦岛 125100
  • 折叠

摘要

为建设传感器网络监测井下参数波动以实时反映风网运行状态,实现矿井通风参数智能感知,以最能体现风网变化的风速参数作为监测对象,以传感器优化数作无约束目标函数,利用割集矩阵算法进行函数解算,确定传感器安设分支条数,利用分支被影响度分布进行传感器布设选址寻优,实现传感器网络优化,利用适量风速传感器收集数据反映通风系统全局运行状态.为验证网络优化可靠性,以李雅庄煤矿为工程背景进行实例寻优,结果表明只需在32条分支布设传感器即可实现全矿井通风参数监测.

Abstract

In order to construct a sensor network to monitor the fluctuation of underground parameters that reflect the running state of ventilation network in real time and realize the intelligent perception of mine ventilation parameters,the wind speed parameters that can best reflect the changes of the ventilation network were taken as the monitoring objects,and the sensor optimization number was used as the uncon-strained objective function.The cut set matrix algorithm was used to solve the function and determine the number of branches installed by the sensor,and the distribution of the influence degree of the branch was used to optimize the location of the sensor,so as to realize an optimal construction of the sensor network,and to collect data by via the wind speed sensor so as to obtain the global operation state of the ventila-tion system.In order to verify the reliability of network optimization,Liyazhuang Coal Mine was taken as the engineering background for the example optimization.The results showed that the whole mine ven-tilation parameter monitoring could be realized only by arranging sensors in 32 branches.

关键词

智能通风/参数智能感知/风速监测/通风网络解算/传感器网络优化

Key words

intelligent ventilation/parameter intelligent sensing/wind speed monitoring/ventilation net-work calculation/sensor network optimization

引用本文复制引用

出版年

2024
兰州大学学报(自然科学版)
兰州大学

兰州大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.855
ISSN:0455-2059
段落导航相关论文