兰州大学学报(自然科学版)2024,Vol.60Issue(2) :173-181.DOI:10.13885/j.issn.0455-2059.2024.02.005

基于反事实推理的会话级社交推荐算法

Session-based social recommendation with counterfactual reasoning

张莉 汪海涛 贺建峰 陈星
兰州大学学报(自然科学版)2024,Vol.60Issue(2) :173-181.DOI:10.13885/j.issn.0455-2059.2024.02.005

基于反事实推理的会话级社交推荐算法

Session-based social recommendation with counterfactual reasoning

张莉 1汪海涛 1贺建峰 1陈星1
扫码查看

作者信息

  • 1. 昆明理工大学信息工程与自动化学院,昆明 650500
  • 折叠

摘要

为提高社交推荐算法的准确性和可解释性,对会话中用户历史行为序列的建模过程中,针对现有社交推荐算法未充分考虑引入和学习因果信息的问题,提出基于反事实推理的会话级社交推荐算法.为引入因果信息,利用反事实推理对用户朋友在会话中的历史行为序列生成反事实数据,通过反事实数据捕获社交关系的因果信息.为学习因果信息,在事实和反事实数据的基础上提出由多个损失函数组成的多任务预测模块,在训练模型的过程中学习因果信息.在真实数据集Douban和Delicious中与现有方法比较,提出算法的评估指标Recall@K和MRR@K较基线方法均有提升.

Abstract

In order to improve the accuracy and interpretability of social recommendation algorithms in the process of modeling user historical behavior sequences in a session,and aiming at the problem that the existing social recommendation algorithms do not fully consider the introduction and learning of causal information,a social recommendation algorithm based on counterfactual reasoning at the session level was proposed.In order to introduce causal information,the counterfactual data generator was used to generate such data for a historical behavior sequence of the user's friends in the session,and the causal information of social relations was captured through the counterfactual data.In order to learn the causal information,a multi-task prediction module consisting of multiple loss functions was proposed on the basis of the factual and counterfactual data,and the causal information was learned in the process of training the model.Compared with the existing excellent methods on two real data sets,Douban and Deli-cious,the experiment proved that the proposed algorithm had been improved compared with the baseline method on the evaluation indicators Recall@K and MRR@K.

关键词

社交推荐/反事实推理/因果信息/会话

Key words

social recommendation/counterfactual reasoning/causal information/session

引用本文复制引用

出版年

2024
兰州大学学报(自然科学版)
兰州大学

兰州大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.855
ISSN:0455-2059
段落导航相关论文