首页|基于反事实推理的会话级社交推荐算法

基于反事实推理的会话级社交推荐算法

Session-based social recommendation with counterfactual reasoning

扫码查看
为提高社交推荐算法的准确性和可解释性,对会话中用户历史行为序列的建模过程中,针对现有社交推荐算法未充分考虑引入和学习因果信息的问题,提出基于反事实推理的会话级社交推荐算法.为引入因果信息,利用反事实推理对用户朋友在会话中的历史行为序列生成反事实数据,通过反事实数据捕获社交关系的因果信息.为学习因果信息,在事实和反事实数据的基础上提出由多个损失函数组成的多任务预测模块,在训练模型的过程中学习因果信息.在真实数据集Douban和Delicious中与现有方法比较,提出算法的评估指标Recall@K和MRR@K较基线方法均有提升.
In order to improve the accuracy and interpretability of social recommendation algorithms in the process of modeling user historical behavior sequences in a session,and aiming at the problem that the existing social recommendation algorithms do not fully consider the introduction and learning of causal information,a social recommendation algorithm based on counterfactual reasoning at the session level was proposed.In order to introduce causal information,the counterfactual data generator was used to generate such data for a historical behavior sequence of the user's friends in the session,and the causal information of social relations was captured through the counterfactual data.In order to learn the causal information,a multi-task prediction module consisting of multiple loss functions was proposed on the basis of the factual and counterfactual data,and the causal information was learned in the process of training the model.Compared with the existing excellent methods on two real data sets,Douban and Deli-cious,the experiment proved that the proposed algorithm had been improved compared with the baseline method on the evaluation indicators Recall@K and MRR@K.

social recommendationcounterfactual reasoningcausal informationsession

张莉、汪海涛、贺建峰、陈星

展开 >

昆明理工大学信息工程与自动化学院,昆明 650500

社交推荐 反事实推理 因果信息 会话

2024

兰州大学学报(自然科学版)
兰州大学

兰州大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.855
ISSN:0455-2059
年,卷(期):2024.60(2)